

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Bitcoin Core 0.12.99

Setup

Bitcoin Core [http://bitcoin.org/en/download] is the original Bitcoin client and it builds the backbone of the network. However, it downloads and stores the entire history of Bitcoin transactions (which is currently several GBs); depending on the speed of your computer and network connection, the synchronization process can take anywhere from a few hours to a day or more.

Running

The following are some helpful notes on how to run Bitcoin on your native platform.

Unix

You need the Qt4 run-time libraries to run Bitcoin-Qt. On Debian or Ubuntu:

sudo apt-get install libqtgui4

Unpack the files into a directory and run:

	bin/32/bitcoin-qt (GUI, 32-bit) or bin/32/bitcoind (headless, 32-bit)

	bin/64/bitcoin-qt (GUI, 64-bit) or bin/64/bitcoind (headless, 64-bit)

Windows

Unpack the files into a directory, and then run bitcoin-qt.exe.

OS X

Drag Bitcoin-Core to your applications folder, and then run Bitcoin-Core.

Need Help?

	See the documentation at the Bitcoin Wiki [https://en.bitcoin.it/wiki/Main_Page]
for help and more information.

	Ask for help on #bitcoin [http://webchat.freenode.net?channels=bitcoin] on Freenode. If you don’t have an IRC client use webchat here [http://webchat.freenode.net?channels=bitcoin].

	Ask for help on the BitcoinTalk [https://bitcointalk.org/] forums, in the Technical Support board [https://bitcointalk.org/index.php?board=4.0].

Building

The following are developer notes on how to build Bitcoin on your native platform. They are not complete guides, but include notes on the necessary libraries, compile flags, etc.

	OS X Build Notes

	Unix Build Notes

	Windows Build Notes

	OpenBSD Build Notes

	Gitian Building Guide

Development

The Bitcoin repo’s root README contains relevant information on the development process and automated testing.

	Developer Notes

	Multiwallet Qt Development

	Release Notes

	Release Process

	Source Code Documentation (External Link) [https://dev.visucore.com/bitcoin/doxygen/]

	Translation Process

	Translation Strings Policy

	Unit Tests

	Unauthenticated REST Interface

	Shared Libraries

	BIPS

	Dnsseed Policy

Resources

	Discuss on the BitcoinTalk [https://bitcointalk.org/] forums, in the Development & Technical Discussion board [https://bitcointalk.org/index.php?board=6.0].

	Discuss project-specific development on #bitcoin-core-dev on Freenode. If you don’t have an IRC client use webchat here [http://webchat.freenode.net/?channels=bitcoin-core-dev].

	Discuss general Bitcoin development on #bitcoin-dev on Freenode. If you don’t have an IRC client use webchat here [http://webchat.freenode.net/?channels=bitcoin-dev].

Miscellaneous

	Assets Attribution

	Files

	Tor Support

	Init Scripts (systemd/upstart/openrc)

License

Distributed under the MIT software license [http://www.opensource.org/licenses/mit-license.php].
This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit [https://www.openssl.org/]. This product includes
cryptographic software written by Eric Young (eay@cryptsoft.com), and UPnP software written by Thomas Bernard.

Unauthenticated REST Interface

The REST API can be enabled with the -rest option.

Supported API

####Transactions
GET /rest/tx/<TX-HASH>.<bin|hex|json>

Given a transaction hash: returns a transaction in binary, hex-encoded binary, or JSON formats.

For full TX query capability, one must enable the transaction index via “txindex=1” command line / configuration option.

####Blocks
GET /rest/block/<BLOCK-HASH>.<bin|hex|json>
GET /rest/block/notxdetails/<BLOCK-HASH>.<bin|hex|json>

Given a block hash: returns a block, in binary, hex-encoded binary or JSON formats.

The HTTP request and response are both handled entirely in-memory, thus making maximum memory usage at least 2.66MB (1 MB max block, plus hex encoding) per request.

With the /notxdetails/ option JSON response will only contain the transaction hash instead of the complete transaction details. The option only affects the JSON response.

####Blockheaders
GET /rest/headers/<COUNT>/<BLOCK-HASH>.<bin|hex|json>

Given a block hash: returns amount of blockheaders in upward direction.

 <no title>

 The list of assets used in the bitcoin source and their attribution can now be found in contrib/debian/copyright.

 <no title>

 BIPs that are implemented by Bitcoin Core (up-to-date up to v0.12.0):

	BIP 11 [https://github.com/bitcoin/bips/blob/master/bip-0011.mediawiki]: Multisig outputs are standard since v0.6.0 (PR #669 [https://github.com/bitcoin/bitcoin/pull/669]).

	BIP 13 [https://github.com/bitcoin/bips/blob/master/bip-0013.mediawiki]: The address format for P2SH addresses has been implemented since v0.6.0 (PR #669 [https://github.com/bitcoin/bitcoin/pull/669]).

	BIP 14 [https://github.com/bitcoin/bips/blob/master/bip-0014.mediawiki]: The subversion string is being used as User Agent since v0.6.0 (PR #669 [https://github.com/bitcoin/bitcoin/pull/669]).

	BIP 16 [https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki]: The pay-to-script-hash evaluation rules have been implemented since v0.6.0, and took effect on April 1st 2012 (PR #748 [https://github.com/bitcoin/bitcoin/pull/748]).

	BIP 21 [https://github.com/bitcoin/bips/blob/master/bip-0021.mediawiki]: The URI format for Bitcoin payments has been implemented since v0.6.0 (PR #176 [https://github.com/bitcoin/bitcoin/pull/176]).

	BIP 22 [https://github.com/bitcoin/bips/blob/master/bip-0022.mediawiki]: The ‘getblocktemplate’ (GBT) RPC protocol for mining has been implemented since v0.7.0 (PR #936 [https://github.com/bitcoin/bitcoin/pull/936]).

	BIP 23 [https://github.com/bitcoin/bips/blob/master/bip-0023.mediawiki]: Some extensions to GBT have been implemented since v0.10.0rc1, including longpolling and block proposals (PR #1816 [https://github.com/bitcoin/bitcoin/pull/1816]).

	BIP 30 [https://github.com/bitcoin/bips/blob/master/bip-0030.mediawiki]: The evaluation rules to forbid creating new transactions with the same txid as previous not-fully-spent transactions were implemented since v0.6.0, and the rule took effect on March 15th 2012 (PR #915 [https://github.com/bitcoin/bitcoin/pull/915]).

	BIP 31 [https://github.com/bitcoin/bips/blob/master/bip-0031.mediawiki]: The ‘pong’ protocol message (and the protocol version bump to 60001) has been implemented since v0.6.1 (PR #1081 [https://github.com/bitcoin/bitcoin/pull/1081]).

	BIP 34 [https://github.com/bitcoin/bips/blob/master/bip-0034.mediawiki]: The rule that requires blocks to contain their height (number) in the coinbase input, and the introduction of version 2 blocks has been implemented since v0.7.0. The rule took effect for version 2 blocks as of block 224413 (March 5th 2013), and version 1 blocks are no longer allowed since block 227931 (March 25th 2013) (PR #1526 [https://github.com/bitcoin/bitcoin/pull/1526]).

	BIP 35 [https://github.com/bitcoin/bips/blob/master/bip-0035.mediawiki]: The ‘mempool’ protocol message (and the protocol version bump to 60002) has been implemented since v0.7.0 (PR #1641 [https://github.com/bitcoin/bitcoin/pull/1641]).

	BIP 37 [https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki]: The bloom filtering for transaction relaying, partial merkle trees for blocks, and the protocol version bump to 70001 (enabling low-bandwidth SPV clients) has been implemented since v0.8.0 (PR #1795 [https://github.com/bitcoin/bitcoin/pull/1795]).

	BIP 42 [https://github.com/bitcoin/bips/blob/master/bip-0042.mediawiki]: The bug that would have caused the subsidy schedule to resume after block 13440000 was fixed in v0.9.2 (PR #3842 [https://github.com/bitcoin/bitcoin/pull/3842]).

	BIP 61 [https://github.com/bitcoin/bips/blob/master/bip-0061.mediawiki]: The ‘reject’ protocol message (and the protocol version bump to 70002) was added in v0.9.0 (PR #3185 [https://github.com/bitcoin/bitcoin/pull/3185]).

	BIP 65 [https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki]: The CHECKLOCKTIMEVERIFY softfork was merged in v0.12.0 (PR #6351 [https://github.com/bitcoin/bitcoin/pull/6351]), and backported to v0.11.2 and v0.10.4. Mempool-only CLTV was added in PR #6124 [https://github.com/bitcoin/bitcoin/pull/6124].

	BIP 66 [https://github.com/bitcoin/bips/blob/master/bip-0066.mediawiki]: The strict DER rules and associated version 3 blocks have been implemented since v0.10.0 (PR #5713 [https://github.com/bitcoin/bitcoin/pull/5713]).

	BIP 70 [https://github.com/bitcoin/bips/blob/master/bip-0070.mediawiki] 71 [https://github.com/bitcoin/bips/blob/master/bip-0071.mediawiki] 72 [https://github.com/bitcoin/bips/blob/master/bip-0072.mediawiki]: Payment Protocol support has been available in Bitcoin Core GUI since v0.9.0 (PR #5216 [https://github.com/bitcoin/bitcoin/pull/5216]).

	BIP 111 [https://github.com/bitcoin/bips/blob/master/bip-0111.mediawiki]: NODE_BLOOM service bit added, but only enforced for peer versions >=70011 as of v0.12.0 (PR #6579 [https://github.com/bitcoin/bitcoin/pull/6579]).

	BIP 125 [https://github.com/bitcoin/bips/blob/master/bip-0125.mediawiki]: Opt-in full replace-by-fee signaling honoured in mempool and mining as of v0.12.0 (PR 6871 [https://github.com/bitcoin/bitcoin/pull/6871]).

	BIP 130 [https://github.com/bitcoin/bips/blob/master/bip-0130.mediawiki]: direct headers announcement is negotiated with peer versions >=70012 as of v0.12.0 (PR 6494 [https://github.com/bitcoin/bitcoin/pull/6494]).

 OpenBSD build guide

OpenBSD build guide

(updated for OpenBSD 5.7)

This guide describes how to build bitcoind and command-line utilities on OpenBSD.

As OpenBSD is most common as a server OS, we will not bother with the GUI.

Preparation

Run the following as root to install the base dependencies for building:

pkg_add gmake libtool libevent
pkg_add autoconf # (select highest version, e.g. 2.69)
pkg_add automake # (select highest version, e.g. 1.15)
pkg_add python # (select version 2.7.x, not 3.x)
ln -sf /usr/local/bin/python2.7 /usr/local/bin/python2

The default C++ compiler that comes with OpenBSD 5.7 is g++ 4.2. This version is old (from 2007), and is not able to compile the current version of Bitcoin Core. It is possible to patch it up to compile, but with the planned transition to C++11 this is a losing battle. So here we will be installing a newer compiler.

GCC

You can install a newer version of gcc with:

pkg_add g++ # (select newest 4.x version, e.g. 4.9.2)

This compiler will not overwrite the system compiler, it will be installed as egcc and eg++ in /usr/local/bin.

Building boost

Do not use pkg_add boost! The boost version installed thus is compiled using the g++ compiler not eg++, which will result in a conflict between /usr/local/lib/libestdc++.so.XX.0 and /usr/lib/libstdc++.so.XX.0, resulting in a test crash:

test_bitcoin:/usr/lib/libstdc++.so.57.0: /usr/local/lib/libestdc++.so.17.0 : WARNING: symbol(_ZN11__gnu_debug17_S_debug_me ssagesE) size mismatch, relink your program
...
Segmentation fault (core dumped)

This makes it necessary to build boost, or at least the parts used by Bitcoin Core, manually:

Pick some path to install boost to, here we create a directory within the bitcoin directory
BITCOIN_ROOT=$(pwd)
BOOST_PREFIX="${BITCOIN_ROOT}/boost"
mkdir -p $BOOST_PREFIX

Fetch the source and verify that it is not tampered with
wget http://heanet.dl.sourceforge.net/project/boost/boost/1.59.0/boost_1_59_0.tar.bz2
echo '727a932322d94287b62abb1bd2d41723eec4356a7728909e38adb65ca25241ca boost_1_59_0.tar.bz2' | sha256 -c
MUST output: (SHA256) boost_1_59_0.tar.bz2: OK
tar -xjf boost_1_59_0.tar.bz2

Boost 1.59 needs two small patches for OpenBSD
cd boost_1_59_0
Also here: https://gist.githubusercontent.com/laanwj/bf359281dc319b8ff2e1/raw/92250de8404b97bb99d72ab898f4a8cb35ae1ea3/patch-boost_test_impl_execution_monitor_ipp.patch
patch -p0 < /usr/ports/devel/boost/patches/patch-boost_test_impl_execution_monitor_ipp
https://github.com/boostorg/filesystem/commit/90517e459681790a091566dce27ca3acabf9a70c
sed 's/__OPEN_BSD__/__OpenBSD__/g' < libs/filesystem/src/path.cpp > libs/filesystem/src/path.cpp.tmp
mv libs/filesystem/src/path.cpp.tmp libs/filesystem/src/path.cpp

Build w/ minimum configuration necessary for bitcoin
echo 'using gcc : : eg++ : <cxxflags>"-fvisibility=hidden -fPIC" <linkflags>"" <archiver>"ar" <striper>"strip" <ranlib>"ranlib" <rc>"" : ;' > user-config.jam
config_opts="runtime-link=shared threadapi=pthread threading=multi link=static variant=release --layout=tagged --build-type=complete --user-config=user-config.jam -sNO_BZIP2=1"
./bootstrap.sh --without-icu --with-libraries=chrono,filesystem,program_options,system,thread,test
./b2 -d2 -j2 -d1 ${config_opts} --prefix=${BOOST_PREFIX} stage
./b2 -d0 -j4 ${config_opts} --prefix=${BOOST_PREFIX} install

Building BerkeleyDB

BerkeleyDB is only necessary for the wallet functionality. To skip this, pass --disable-wallet to ./configure.

See “Berkeley DB” in build_unix.md for instructions on how to build BerkeleyDB 4.8.
You cannot use the BerkeleyDB library from ports, for the same reason as boost above (g++/libstd++ incompatibility).

Pick some path to install BDB to, here we create a directory within the bitcoin directory
BITCOIN_ROOT=$(pwd)
BDB_PREFIX="${BITCOIN_ROOT}/db4"
mkdir -p $BDB_PREFIX

Fetch the source and verify that it is not tampered with
wget 'http://download.oracle.com/berkeley-db/db-4.8.30.NC.tar.gz'
echo '12edc0df75bf9abd7f82f821795bcee50f42cb2e5f76a6a281b85732798364ef db-4.8.30.NC.tar.gz' | sha256 -c
MUST output: (SHA256) db-4.8.30.NC.tar.gz: OK
tar -xzf db-4.8.30.NC.tar.gz

Build the library and install to specified prefix
cd db-4.8.30.NC/build_unix/
Note: Do a static build so that it can be embedded into the executable, instead of having to find a .so at runtime
../dist/configure --enable-cxx --disable-shared --with-pic --prefix=$BDB_PREFIX CC=egcc CXX=eg++ CPP=ecpp
make install

Building Bitcoin Core

Important: use gmake, not make. The non-GNU make will exit with a horrible error.

Preparation:

export AUTOCONF_VERSION=2.69 # replace this with the autoconf version that you installed
export AUTOMAKE_VERSION=1.15 # replace this with the automake version that you installed
./autogen.sh

Make sure BDB_PREFIX and BOOST_PREFIX are set to the appropriate paths from the above steps.

To configure with wallet:

./configure --with-gui=no --with-boost=$BOOST_PREFIX \
 CC=egcc CXX=eg++ CPP=ecpp \
 LDFLAGS="-L${BDB_PREFIX}/lib/" CPPFLAGS="-I${BDB_PREFIX}/include/"

To configure without wallet:

./configure --disable-wallet --with-gui=no --with-boost=$BOOST_PREFIX \
 CC=egcc CXX=eg++ CPP=ecpp

Build and run the tests:

gmake
gmake check

Clang (not currently working)

Using a newer g++ results in linking the new code to a new libstdc++.
Libraries built with the old g++, will still import the old library.
This gives conflicts, necessitating rebuild of all C++ dependencies of the application.

With clang this can - at least theoretically - be avoided because it uses the
base system’s libstdc++.

pkg_add llvm boost

./configure --disable-wallet --with-gui=no CC=clang CXX=clang++
gmake

However, this does not appear to work. Compilation succeeds, but link fails
with many ‘local symbol discarded’ errors:

local symbol 150: discarded in section `.text._ZN10tinyformat6detail14FormatIterator6finishEv' from libbitcoin_util.a(libbitcoin_util_a-random.o)
local symbol 151: discarded in section `.text._ZN10tinyformat6detail14FormatIterator21streamStateFromFormatERSoRjPKcii' from libbitcoin_util.a(libbitcoin_util_a-random.o)
local symbol 152: discarded in section `.text._ZN10tinyformat6detail12convertToIntIA13_cLb0EE6invokeERA13_Kc' from libbitcoin_util.a(libbitcoin_util_a-random.o)

According to similar reported errors this is a binutils (ld) issue in 2.15, the
version installed by OpenBSD 5.7:

	http://openbsd-archive.7691.n7.nabble.com/UPDATE-cppcheck-1-65-td248900.html

	https://llvm.org/bugs/show_bug.cgi?id=9758

There is no known workaround for this.

 Mac OS X Build Instructions and Notes

Mac OS X Build Instructions and Notes

This guide will show you how to build bitcoind (headless client) for OS X.

Notes

	Tested on OS X 10.7 through 10.11 on 64-bit Intel processors only.

	All of the commands should be executed in a Terminal application. The
built-in one is located in /Applications/Utilities.

Preparation

You need to install Xcode with all the options checked so that the compiler
and everything is available in /usr not just /Developer. Xcode should be
available on your OS X installation media, but if not, you can get the
current version from https://developer.apple.com/xcode/. If you install
Xcode 4.3 or later, you’ll need to install its command line tools. This can
be done in Xcode > Preferences > Downloads > Components and generally must
be re-done or updated every time Xcode is updated.

You will also need to install Homebrew [http://brew.sh] in order to install library
dependencies.

The installation of the actual dependencies is covered in the instructions
sections below.

Instructions: Homebrew

Install dependencies using Homebrew

brew install autoconf automake berkeley-db4 libtool boost miniupnpc openssl pkg-config protobuf qt5 libevent

NOTE: Building with Qt4 is still supported, however, could result in a broken UI. As such, building with Qt5 is recommended.

Building bitcoin

	Clone the GitHub tree to get the source code and go into the directory.

 git clone https://github.com/bitcoin/bitcoin.git
 cd bitcoin

	Build bitcoin-core:
This will configure and build the headless bitcoin binaries as well as the gui (if Qt is found).
You can disable the gui build by passing --without-gui to configure.

./autogen.sh
./configure
make

	It is also a good idea to build and run the unit tests:

make check

	(Optional) You can also install bitcoind to your path:

make install

Use Qt Creator as IDE

You can use Qt Creator as IDE, for debugging and for manipulating forms, etc.
Download Qt Creator from https://www.qt.io/download/. Download the “community edition” and only install Qt Creator (uncheck the rest during the installation process).

	Make sure you installed everything through Homebrew mentioned above

	Do a proper ./configure –enable-debug

	In Qt Creator do “New Project” -> Import Project -> Import Existing Project

	Enter “bitcoin-qt” as project name, enter src/qt as location

	Leave the file selection as it is

	Confirm the “summary page”

	In the “Projects” tab select “Manage Kits…”

	Select the default “Desktop” kit and select “Clang (x86 64bit in /usr/bin)” as compiler

	Select LLDB as debugger (you might need to set the path to your installation)

	Start debugging with Qt Creator

Creating a release build

You can ignore this section if you are building bitcoind for your own use.

bitcoind/bitcoin-cli binaries are not included in the Bitcoin-Qt.app bundle.

If you are building bitcoind or Bitcoin Core for others, your build machine should be set up
as follows for maximum compatibility:

All dependencies should be compiled with these flags:

-mmacosx-version-min=10.7
-arch x86_64
-isysroot $(xcode-select –print-path)/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.7.sdk

Once dependencies are compiled, see doc/release-process.md for how the Bitcoin Core
bundle is packaged and signed to create the .dmg disk image that is distributed.

Running

It’s now available at ./bitcoind, provided that you are still in the src
directory. We have to first create the RPC configuration file, though.

Run ./bitcoind to get the filename where it should be put, or just try these
commands:

echo -e "rpcuser=bitcoinrpc\nrpcpassword=$(xxd -l 16 -p /dev/urandom)" > "/Users/${USER}/Library/Application Support/Bitcoin/bitcoin.conf"
chmod 600 "/Users/${USER}/Library/Application Support/Bitcoin/bitcoin.conf"

The next time you run it, it will start downloading the blockchain, but it won’t
output anything while it’s doing this. This process may take several hours;
you can monitor its process by looking at the debug.log file, like this:

tail -f $HOME/Library/Application\ Support/Bitcoin/debug.log

Other commands:

./bitcoind -daemon # to start the bitcoin daemon.
./bitcoin-cli --help # for a list of command-line options.
./bitcoin-cli help # When the daemon is running, to get a list of RPC commands

 UNIX BUILD NOTES

UNIX BUILD NOTES

Some notes on how to build Bitcoin Core in Unix.

(for OpenBSD specific instructions, see build-openbsd.md)

Note

Always use absolute paths to configure and compile bitcoin and the dependencies,
for example, when specifying the path of the dependency:

../dist/configure --enable-cxx --disable-shared --with-pic --prefix=$BDB_PREFIX

Here BDB_PREFIX must be an absolute path - it is defined using $(pwd) which ensures
the usage of the absolute path.

To Build

./autogen.sh
./configure
make
make install # optional

This will build bitcoin-qt as well if the dependencies are met.

Dependencies

These dependencies are required:

Library | Purpose | Description
————|——————|———————-
libssl | Crypto | Random Number Generation, Elliptic Curve Cryptography
libboost | Utility | Library for threading, data structures, etc
libevent | Networking | OS independent asynchronous networking

Optional dependencies:

Library | Purpose | Description
————|——————|———————-
miniupnpc | UPnP Support | Firewall-jumping support
libdb4.8 | Berkeley DB | Wallet storage (only needed when wallet enabled)
qt | GUI | GUI toolkit (only needed when GUI enabled)
protobuf | Payments in GUI | Data interchange format used for payment protocol (only needed when GUI enabled)
libqrencode | QR codes in GUI | Optional for generating QR codes (only needed when GUI enabled)
univalue | Utility | JSON parsing and encoding (bundled version will be used unless –with-system-univalue passed to configure)
libzmq3 | ZMQ notification | Optional, allows generating ZMQ notifications (requires ZMQ version >= 4.x)

For the versions used in the release, see release-process.md under Fetch and build inputs.

Memory Requirements

C++ compilers are memory-hungry. It is recommended to have at least 1.5 GB of
memory available when compiling Bitcoin Core. On systems with less, gcc can be
tuned to conserve memory with additional CXXFLAGS:

./configure CXXFLAGS="--param ggc-min-expand=1 --param ggc-min-heapsize=32768"

Dependency Build Instructions: Ubuntu & Debian

Build requirements:

sudo apt-get install build-essential libtool autotools-dev automake pkg-config libssl-dev libevent-dev bsdmainutils

Options when installing required Boost library files:

	On at least Ubuntu 14.04+ and Debian 7+ there are generic names for the
individual boost development packages, so the following can be used to only
install necessary parts of boost:

 sudo apt-get install libboost-system-dev libboost-filesystem-dev libboost-chrono-dev libboost-program-options-dev libboost-test-dev libboost-thread-dev

	If that doesn’t work, you can install all boost development packages with:

 sudo apt-get install libboost-all-dev

BerkeleyDB is required for the wallet. db4.8 packages are available here [https://launchpad.net/~bitcoin/+archive/bitcoin].
You can add the repository and install using the following commands:

sudo add-apt-repository ppa:bitcoin/bitcoin
sudo apt-get update
sudo apt-get install libdb4.8-dev libdb4.8++-dev

Ubuntu and Debian have their own libdb-dev and libdb++-dev packages, but these will install
BerkeleyDB 5.1 or later, which break binary wallet compatibility with the distributed executables which
are based on BerkeleyDB 4.8. If you do not care about wallet compatibility,
pass --with-incompatible-bdb to configure.

See the section “Disable-wallet mode” to build Bitcoin Core without wallet.

Optional:

sudo apt-get install libminiupnpc-dev (see --with-miniupnpc and --enable-upnp-default)

ZMQ dependencies:

sudo apt-get install libzmq3-dev (provides ZMQ API 4.x)

Dependencies for the GUI: Ubuntu & Debian

If you want to build Bitcoin-Qt, make sure that the required packages for Qt development
are installed. Either Qt 5 or Qt 4 are necessary to build the GUI.
If both Qt 4 and Qt 5 are installed, Qt 5 will be used. Pass --with-gui=qt4 to configure to choose Qt4.
To build without GUI pass --without-gui.

To build with Qt 5 (recommended) you need the following:

sudo apt-get install libqt5gui5 libqt5core5a libqt5dbus5 qttools5-dev qttools5-dev-tools libprotobuf-dev protobuf-compiler

Alternatively, to build with Qt 4 you need the following:

sudo apt-get install libqt4-dev libprotobuf-dev protobuf-compiler

libqrencode (optional) can be installed with:

sudo apt-get install libqrencode-dev

Once these are installed, they will be found by configure and a bitcoin-qt executable will be
built by default.

Notes

The release is built with GCC and then “strip bitcoind” to strip the debug
symbols, which reduces the executable size by about 90%.

miniupnpc

miniupnpc [http://miniupnp.free.fr/] may be used for UPnP port mapping. It can be downloaded from here [http://miniupnp.tuxfamily.org/files/]. UPnP support is compiled in and
turned off by default. See the configure options for upnp behavior desired:

--without-miniupnpc No UPnP support miniupnp not required
--disable-upnp-default (the default) UPnP support turned off by default at runtime
--enable-upnp-default UPnP support turned on by default at runtime

Berkeley DB

It is recommended to use Berkeley DB 4.8. If you have to build it yourself:

BITCOIN_ROOT=$(pwd)

Pick some path to install BDB to, here we create a directory within the bitcoin directory
BDB_PREFIX="${BITCOIN_ROOT}/db4"
mkdir -p $BDB_PREFIX

Fetch the source and verify that it is not tampered with
wget 'http://download.oracle.com/berkeley-db/db-4.8.30.NC.tar.gz'
echo '12edc0df75bf9abd7f82f821795bcee50f42cb2e5f76a6a281b85732798364ef db-4.8.30.NC.tar.gz' | sha256sum -c
-> db-4.8.30.NC.tar.gz: OK
tar -xzvf db-4.8.30.NC.tar.gz

Build the library and install to our prefix
cd db-4.8.30.NC/build_unix/
Note: Do a static build so that it can be embedded into the executable, instead of having to find a .so at runtime
../dist/configure --enable-cxx --disable-shared --with-pic --prefix=$BDB_PREFIX
make install

Configure Bitcoin Core to use our own-built instance of BDB
cd $BITCOIN_ROOT
./autogen.sh
./configure LDFLAGS="-L${BDB_PREFIX}/lib/" CPPFLAGS="-I${BDB_PREFIX}/include/" # (other args...)

Note: You only need Berkeley DB if the wallet is enabled (see the section Disable-Wallet mode below).

Boost

If you need to build Boost yourself:

sudo su
./bootstrap.sh
./bjam install

Security

To help make your bitcoin installation more secure by making certain attacks impossible to
exploit even if a vulnerability is found, binaries are hardened by default.
This can be disabled with:

Hardening Flags:

./configure --enable-hardening
./configure --disable-hardening

Hardening enables the following features:

	Position Independent Executable
Build position independent code to take advantage of Address Space Layout Randomization
offered by some kernels. Attackers who can cause execution of code at an arbitrary memory
location are thwarted if they don’t know where anything useful is located.
The stack and heap are randomly located by default but this allows the code section to be
randomly located as well.

On an AMD64 processor where a library was not compiled with -fPIC, this will cause an error
such as: “relocation R_X86_64_32 against `……’ can not be used when making a shared object;”

To test that you have built PIE executable, install scanelf, part of paxutils, and use:

 scanelf -e ./bitcoin

The output should contain:

TYPE
ET_DYN

	Non-executable Stack
If the stack is executable then trivial stack based buffer overflow exploits are possible if
vulnerable buffers are found. By default, bitcoin should be built with a non-executable stack
but if one of the libraries it uses asks for an executable stack or someone makes a mistake
and uses a compiler extension which requires an executable stack, it will silently build an
executable without the non-executable stack protection.

To verify that the stack is non-executable after compiling use:
scanelf -e ./bitcoin

the output should contain:
STK/REL/PTL
RW- R– RW-

The STK RW- means that the stack is readable and writeable but not executable.

Disable-wallet mode

When the intention is to run only a P2P node without a wallet, bitcoin may be compiled in
disable-wallet mode with:

./configure --disable-wallet

In this case there is no dependency on Berkeley DB 4.8.

Mining is also possible in disable-wallet mode, but only using the getblocktemplate RPC
call not getwork.

Additional Configure Flags

A list of additional configure flags can be displayed with:

./configure --help

 WINDOWS BUILD NOTES

WINDOWS BUILD NOTES

Some notes on how to build Bitcoin Core for Windows.

Most developers use cross-compilation from Ubuntu to build executables for
Windows. This is also used to build the release binaries.

Building on Windows itself is possible (for example using msys / mingw-w64),
but no one documented the steps to do this. If you are doing this, please contribute them.

Cross-compilation

These steps can be performed on, for example, an Ubuntu VM. The depends system
will also work on other Linux distributions, however the commands for
installing the toolchain will be different.

First install the toolchains:

sudo apt-get install g++-mingw-w64-i686 mingw-w64-i686-dev g++-mingw-w64-x86-64 mingw-w64-x86-64-dev

To build executables for Windows 32-bit:

cd depends
make HOST=i686-w64-mingw32 -j4
cd ..
./configure --prefix=`pwd`/depends/i686-w64-mingw32
make

To build executables for Windows 64-bit:

cd depends
make HOST=x86_64-w64-mingw32 -j4
cd ..
./configure --prefix=`pwd`/depends/x86_64-w64-mingw32
make

For further documentation on the depends system see README.md in the depends directory.

 Developer Notes

Developer Notes

Various coding styles have been used during the history of the codebase,
and the result is not very consistent. However, we’re now trying to converge to
a single style, so please use it in new code. Old code will be converted
gradually.

	Basic rules specified in src/.clang-format. Use a recent clang-format-3.5 to format automatically.

	Braces on new lines for namespaces, classes, functions, methods.

	Braces on the same line for everything else.

	4 space indentation (no tabs) for every block except namespaces.

	No indentation for public/protected/private or for namespaces.

	No extra spaces inside parenthesis; don’t do (this)

	No space after function names; one space after if, for and while.

Block style example:

namespace foo
{
class Class
{
 bool Function(char* psz, int n)
 {
 // Comment summarising what this section of code does
 for (int i = 0; i < n; i++) {
 // When something fails, return early
 if (!Something())
 return false;
 ...
 }

 // Success return is usually at the end
 return true;
 }
}
}

Doxygen comments

To facilitate the generation of documentation, use doxygen-compatible comment blocks for functions, methods and fields.

For example, to describe a function use:

/**
 * ... text ...
 * @param[in] arg1 A description
 * @param[in] arg2 Another argument description
 * @pre Precondition for function...
 */
bool function(int arg1, const char *arg2)

A complete list of @xxx commands can be found at http://www.stack.nl/~dimitri/doxygen/manual/commands.html.
As Doxygen recognizes the comments by the delimiters (/** and */ in this case), you don’t
need to provide any commands for a comment to be valid; just a description text is fine.

To describe a class use the same construct above the class definition:

/**
 * Alerts are for notifying old versions if they become too obsolete and
 * need to upgrade. The message is displayed in the status bar.
 * @see GetWarnings()
 */
class CAlert
{

To describe a member or variable use:

int var; //!< Detailed description after the member

Also OK:

///
/// ... text ...
///
bool function2(int arg1, const char *arg2)

Not OK (used plenty in the current source, but not picked up):

//
// ... text ...
//

A full list of comment syntaxes picked up by doxygen can be found at http://www.stack.nl/~dimitri/doxygen/manual/docblocks.html,
but if possible use one of the above styles.

Development tips and tricks

compiling for debugging

Run configure with the –enable-debug option, then make. Or run configure with
CXXFLAGS=”-g -ggdb -O0” or whatever debug flags you need.

debug.log

If the code is behaving strangely, take a look in the debug.log file in the data directory;
error and debugging messages are written there.

The -debug=… command-line option controls debugging; running with just -debug or -debug=1 will turn
on all categories (and give you a very large debug.log file).

The Qt code routes qDebug() output to debug.log under category “qt”: run with -debug=qt
to see it.

testnet and regtest modes

Run with the -testnet option to run with “play bitcoins” on the test network, if you
are testing multi-machine code that needs to operate across the internet.

If you are testing something that can run on one machine, run with the -regtest option.
In regression test mode, blocks can be created on-demand; see qa/rpc-tests/ for tests
that run in -regtest mode.

DEBUG_LOCKORDER

Bitcoin Core is a multithreaded application, and deadlocks or other multithreading bugs
can be very difficult to track down. Compiling with -DDEBUG_LOCKORDER (configure
CXXFLAGS=”-DDEBUG_LOCKORDER -g”) inserts run-time checks to keep track of which locks
are held, and adds warnings to the debug.log file if inconsistencies are detected.

Locking/mutex usage notes

The code is multi-threaded, and uses mutexes and the
LOCK/TRY_LOCK macros to protect data structures.

Deadlocks due to inconsistent lock ordering (thread 1 locks cs_main
and then cs_wallet, while thread 2 locks them in the opposite order:
result, deadlock as each waits for the other to release its lock) are
a problem. Compile with -DDEBUG_LOCKORDER to get lock order
inconsistencies reported in the debug.log file.

Re-architecting the core code so there are better-defined interfaces
between the various components is a goal, with any necessary locking
done by the components (e.g. see the self-contained CKeyStore class
and its cs_KeyStore lock for example).

Threads

	ThreadScriptCheck : Verifies block scripts.

	ThreadImport : Loads blocks from blk*.dat files or bootstrap.dat.

	StartNode : Starts other threads.

	ThreadDNSAddressSeed : Loads addresses of peers from the DNS.

	ThreadMapPort : Universal plug-and-play startup/shutdown

	ThreadSocketHandler : Sends/Receives data from peers on port 8333.

	ThreadOpenAddedConnections : Opens network connections to added nodes.

	ThreadOpenConnections : Initiates new connections to peers.

	ThreadMessageHandler : Higher-level message handling (sending and receiving).

	DumpAddresses : Dumps IP addresses of nodes to peers.dat.

	ThreadFlushWalletDB : Close the wallet.dat file if it hasn’t been used in 500ms.

	ThreadRPCServer : Remote procedure call handler, listens on port 8332 for connections and services them.

	BitcoinMiner : Generates bitcoins (if wallet is enabled).

	Shutdown : Does an orderly shutdown of everything.

Ignoring IDE/editor files

In closed-source environments in which everyone uses the same IDE it is common
to add temporary files it produces to the project-wide .gitignore file.

However, in open source software such as Bitcoin Core, where everyone uses
their own editors/IDE/tools, it is less common. Only you know what files your
editor produces and this may change from version to version. The canonical way
to do this is thus to create your local gitignore. Add this to ~/.gitconfig:

[core]
 excludesfile = /home/.../.gitignore_global

(alternatively, type the command git config --global core.excludesfile ~/.gitignore_global
on a terminal)

Then put your favourite tool’s temporary filenames in that file, e.g.

NetBeans
nbproject/

Another option is to create a per-repository excludes file .git/info/exclude.
These are not committed but apply only to one repository.

If a set of tools is used by the build system or scripts the repository (for
example, lcov) it is perfectly acceptable to add its files to .gitignore
and commit them.

Development guidelines

A few non-style-related recommendations for developers, as well as points to
pay attention to for reviewers of Bitcoin Core code.

General Bitcoin Core

	New features should be exposed on RPC first, then can be made available in the GUI

	Rationale: RPC allows for better automatic testing. The test suite for
the GUI is very limited

	Make sure pull requests pass Travis CI before merging

	Rationale: Makes sure that they pass thorough testing, and that the tester will keep passing
on the master branch. Otherwise all new pull requests will start failing the tests, resulting in
confusion and mayhem

	Explanation: If the test suite is to be updated for a change, this has to
be done first

Wallet

	Make sure that no crashes happen with run-time option -disablewallet.

	Rationale: In RPC code that conditionally uses the wallet (such as
validateaddress) it is easy to forget that global pointer pwalletMain
can be NULL. See qa/rpc-tests/disablewallet.py for functional tests
exercising the API with -disablewallet

	Include db_cxx.h (BerkeleyDB header) only when ENABLE_WALLET is set

	Rationale: Otherwise compilation of the disable-wallet build will fail in environments without BerkeleyDB

General C++

	Assertions should not have side-effects

	Rationale: Even though the source code is set to to refuse to compile
with assertions disabled, having side-effects in assertions is unexpected and
makes the code harder to understand

	If you use the .h, you must link the .cpp

	Rationale: Include files define the interface for the code in implementation files. Including one but
not linking the other is confusing. Please avoid that. Moving functions from
the .h to the .cpp should not result in build errors

	Use the RAII (Resource Acquisition Is Initialization) paradigm where possible. For example by using
scoped_pointer for allocations in a function.

	Rationale: This avoids memory and resource leaks, and ensures exception safety

C++ data structures

	Never use the std::map [] syntax when reading from a map, but instead use .find()

	Rationale: [] does an insert (of the default element) if the item doesn’t
exist in the map yet. This has resulted in memory leaks in the past, as well as
race conditions (expecting read-read behavior). Using [] is fine for writing to a map

	Do not compare an iterator from one data structure with an iterator of
another data structure (even if of the same type)

	Rationale: Behavior is undefined. In C++ parlor this means “may reformat
the universe”, in practice this has resulted in at least one hard-to-debug crash bug

	Watch out for vector out-of-bounds exceptions. &vch[0] is illegal for an
empty vector, &vch[vch.size()] is always illegal. Use begin_ptr(vch) and
end_ptr(vch) to get the begin and end pointer instead (defined in
serialize.h)

	Vector bounds checking is only enabled in debug mode. Do not rely on it

	Make sure that constructors initialize all fields. If this is skipped for a
good reason (i.e., optimization on the critical path), add an explicit
comment about this

	Rationale: Ensure determinism by avoiding accidental use of uninitialized
values. Also, static analyzers balk about this.

	Use explicitly signed or unsigned chars, or even better uint8_t and
int8_t. Do not use bare char unless it is to pass to a third-party API.
This type can be signed or unsigned depending on the architecture, which can
lead to interoperability problems or dangerous conditions such as
out-of-bounds array accesses

	Prefer explicit constructions over implicit ones that rely on ‘magical’ C++ behavior

	Rationale: Easier to understand what is happening, thus easier to spot mistakes, even for those
that are not language lawyers

Strings and formatting

	Be careful of LogPrint versus LogPrintf. LogPrint takes a category argument, LogPrintf does not.

	Rationale: Confusion of these can result in runtime exceptions due to
formatting mismatch, and it is easy to get wrong because of subtly similar naming

	Use std::string, avoid C string manipulation functions

	Rationale: C++ string handling is marginally safer, less scope for
buffer overflows and surprises with \0 characters. Also some C string manipulations
tend to act differently depending on platform, or even the user locale

	Use ParseInt32, ParseInt64, ParseDouble from utilstrencodings.h for number parsing

	Rationale: These functions do overflow checking, and avoid pesky locale issues

	For strprintf, LogPrint, LogPrintf formatting characters don’t need size specifiers

	Rationale: Bitcoin Core uses tinyformat, which is type safe. Leave them out to avoid confusion

Threads and synchronization

	Build and run tests with -DDEBUG_LOCKORDER to verify that no potential
deadlocks are introduced. As of 0.12, this is defined by default when
configuring with --enable-debug

	When using LOCK/TRY_LOCK be aware that the lock exists in the context of
the current scope, so surround the statement and the code that needs the lock
with braces

OK:

{
 TRY_LOCK(cs_vNodes, lockNodes);
 ...
}

Wrong:

TRY_LOCK(cs_vNodes, lockNodes);
{
 ...
}

Source code organization

	Implementation code should go into the .cpp file and not the .h, unless necessary due to template usage or
when performance due to inlining is critical

	Rationale: Shorter and simpler header files are easier to read, and reduce compile time

	Don’t import anything into the global namespace (using namespace ...). Use
fully specified types such as std::string.

	Rationale: Avoids symbol conflicts

GUI

	Do not display or manipulate dialogs in model code (classes *Model)

	Rationale: Model classes pass through events and data from the core, they
should not interact with the user. That’s where View classes come in. The converse also
holds: try to not directly access core data structures from Views.

 Expectations for DNS Seed operators

Expectations for DNS Seed operators

Bitcoin Core attempts to minimize the level of trust in DNS seeds,
but DNS seeds still pose a small amount of risk for the network.
As such, DNS seeds must be run by entities which have some minimum
level of trust within the Bitcoin community.

Other implementations of Bitcoin software may also use the same
seeds and may be more exposed. In light of this exposure, this
document establishes some basic expectations for operating dnsseeds.

	A DNS seed operating organization or person is expected to follow good
host security practices, maintain control of applicable infrastructure,
and not sell or transfer control of the DNS seed. Any hosting services
contracted by the operator are equally expected to uphold these expectations.

	The DNS seed results must consist exclusively of fairly selected and
functioning Bitcoin nodes from the public network to the best of the
operator’s understanding and capability.

	For the avoidance of doubt, the results may be randomized but must not
single-out any group of hosts to receive different results unless due to an
urgent technical necessity and disclosed.

	The results may not be served with a DNS TTL of less than one minute.

	Any logging of DNS queries should be only that which is necessary
for the operation of the service or urgent health of the Bitcoin
network and must not be retained longer than necessary nor disclosed
to any third party.

	Information gathered as a result of the operators node-spidering
(not from DNS queries) may be freely published or retained, but only
if this data was not made more complete by biasing node connectivity
(a violation of expectation (1)).

	Operators are encouraged, but not required, to publicly document the
details of their operating practices.

	A reachable email contact address must be published for inquiries
related to the DNS seed operation.

If these expectations cannot be satisfied the operator should
discontinue providing services and contact the active Bitcoin
Core development team as well as posting on
bitcoin-dev [https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev].

Behavior outside of these expectations may be reasonable in some
situations but should be discussed in public in advance.

See also

	bitcoin-seeder [https://github.com/sipa/bitcoin-seeder] is a reference implementation of a DNS seed.

 Only used in pre-0.8.0

	banlist.dat: stores the IPs/Subnets of banned nodes

	bitcoin.conf: contains configuration settings for bitcoind or bitcoin-qt

	bitcoind.pid: stores the process id of bitcoind while running

	blocks/blk000??.dat: block data (custom, 128 MiB per file); since 0.8.0

	blocks/rev000??.dat; block undo data (custom); since 0.8.0 (format changed since pre-0.8)

	blocks/index/*; block index (LevelDB); since 0.8.0

	chainstate/*; block chain state database (LevelDB); since 0.8.0

	database/*: BDB database environment; only used for wallet since 0.8.0

	db.log: wallet database log file

	debug.log: contains debug information and general logging generated by bitcoind or bitcoin-qt

	fee_estimates.dat: stores statistics used to estimate minimum transaction fees and priorities required for confirmation; since 0.10.0

	peers.dat: peer IP address database (custom format); since 0.7.0

	wallet.dat: personal wallet (BDB) with keys and transactions

	.cookie: session RPC authentication cookie (written at start when cookie authentication is used, deleted on shutdown): since 0.12.0

	onion_private_key: cached Tor hidden service private key for -listenonion: since 0.12.0

Only used in pre-0.8.0

	blktree/; block chain index (LevelDB); since pre-0.8, replaced by blocks/index/ in 0.8.0

	coins/; unspent transaction output database (LevelDB); since pre-0.8, replaced by chainstate/ in 0.8.0

Only used before 0.8.0

	blkindex.dat: block chain index database (BDB); replaced by {chainstate/,blocks/index/,blocks/rev000??.dat} in 0.8.0

	blk000?.dat: block data (custom, 2 GiB per file); replaced by blocks/blk000??.dat in 0.8.0

Only used before 0.7.0

	addr.dat: peer IP address database (BDB); replaced by peers.dat in 0.7.0

 Gitian building

Gitian building

Setup instructions for a Gitian build of Bitcoin using a Debian VM or physical system.

Gitian is the deterministic build process that is used to build the Bitcoin
Core executables. It provides a way to be reasonably sure that the
executables are really built from the source on GitHub. It also makes sure that
the same, tested dependencies are used and statically built into the executable.

Multiple developers build the source code by following a specific descriptor
(“recipe”), cryptographically sign the result, and upload the resulting signature.
These results are compared and only if they match, the build is accepted and uploaded
to bitcoin.org.

More independent Gitian builders are needed, which is why this guide exists.
It is preferred you follow these steps yourself instead of using someone else’s
VM image to avoid ‘contaminating’ the build.

Table of Contents

	Create a new VirtualBox VM

	Connecting to the VM

	Setting up Debian for Gitian building

	Installing Gitian

	Setting up the Gitian image

	Getting and building the inputs

	Building Bitcoin

	Building an alternative repository

	Signing externally

	Uploading signatures

Preparing the Gitian builder host

The first step is to prepare the host environment that will be used to perform the Gitian builds.
This guide explains how to set up the environment, and how to start the builds.

Debian Linux was chosen as the host distribution because it has a lightweight install (in contrast to Ubuntu) and is readily available.
Any kind of virtualization can be used, for example:

	VirtualBox [https://www.virtualbox.org/] (covered by this guide)

	KVM [http://www.linux-kvm.org/page/Main_Page]

	LXC [https://linuxcontainers.org/], see also Gitian host docker container [https://github.com/gdm85/tenku/tree/master/docker/gitian-bitcoin-host/README.md].

You can also install Gitian on actual hardware instead of using virtualization.

Create a new VirtualBox VM

In the VirtualBox GUI click “Create” and choose the following parameters in the wizard:

[image:]

	Type: Linux, Debian (64-bit)

[image:]

	Memory Size: at least 1024MB, anything less will really slow down the build.

[image:]

	Hard Disk: Create a virtual hard disk now

[image:]

	Hard Disk file type: Use the default, VDI (VirtualBox Disk Image)

[image:]

	Storage on physical hard disk: Dynamically Allocated

[image:]

	File location and size: at least 40GB; as low as 20GB may be possible, but better to err on the safe side

	Click Create

Get the Debian 8.x net installer [http://cdimage.debian.org/debian-cd/8.3.0/amd64/iso-cd/debian-8.3.0-amd64-netinst.iso] (a more recent minor version should also work, see also Debian Network installation [https://www.debian.org/CD/netinst/]).
This DVD image can be validated using a SHA256 hashing tool, for example on
Unixy OSes by entering the following in a terminal:

echo "dd25bcdde3c6ea5703cc0f313cde621b13d42ff7d252e2538a11663c93bf8654 debian-8.3.0-amd64-netinst.iso" | sha256sum -c
(must return OK)

After creating the VM, we need to configure it.

	Click the Settings button, then go to the Network tab. Adapter 1 should be attached to NAT.

[image:]

	Click Advanced, then Port Forwarding. We want to set up a port through which we can reach the VM to get files in and out.

	Create a new rule by clicking the plus icon.

[image:]

	Set up the new rule the following way:

	Name: SSH

	Protocol: TCP

	Leave Host IP empty

	Host Port: 22222

	Leave Guest IP empty

	Guest Port: 22

	Click Ok twice to save.

Then start the VM. On the first launch you will be asked for a CD or DVD image. Choose the downloaded iso.

[image:]

Installing Debian

This section will explain how to install Debian on the newly created VM.

	Choose the non-graphical installer. We do not need the graphical environment; it will only increase installation time and disk usage.

[image:]

Note: Navigating in the Debian installer:
To keep a setting at the default and proceed, just press Enter.
To select a different button, press Tab.

	Choose locale and keyboard settings (doesn’t matter, you can just go with the defaults or select your own information)

[image:]
[image:]
[image:]

	The VM will detect network settings using DHCP, this should all proceed automatically

	Configure the network:

	Hostname debian.

	Leave domain name empty.

[image:]

	Choose a root password and enter it twice (remember it for later)

[image:]

	Name the new user debian (the full name doesn’t matter, you can leave it empty)

	Set the account username as debian

[image:]
[image:]

	Choose a user password and enter it twice (remember it for later)

[image:]

	The installer will set up the clock using a time server; this process should be automatic

	Set up the clock: choose a time zone (depends on the locale settings that you picked earlier; specifics don’t matter)

[image:]

	Disk setup

	Partitioning method: Guided - Use the entire disk

[image:]

	Select disk to partition: SCSI1 (0,0,0)

[image:]

	Finish partitioning and write changes to disk -> Yes (Tab, Enter to select the Yes button)

[image:]
[image:]

	The base system will be installed, this will take a minute or so

	Choose a mirror (any will do)

[image:]

	Enter proxy information (unless you are on an intranet, leave this empty)

[image:]

	Wait a bit while ‘Select and install software’ runs

	Participate in popularity contest -> No

	Choose software to install. We need just the base system.

	Make sure only ‘SSH server’ and ‘Standard System Utilities’ are checked

	Uncheck ‘Debian Desktop Environment’ and ‘Print Server’

[image:]

	Install the GRUB boot loader to the master boot record? -> Yes

[image:]

	Device for boot loader installation -> ata-VBOX_HARDDISK

[image:]

	Installation Complete -> Continue

	After installation, the VM will reboot and you will have a working Debian VM. Congratulations!

[image:]

After Installation

The next step in the guide involves logging in as root via SSH.
SSH login for root users is disabled by default, so we’ll enable that now.

Login to the VM using username root and the root password you chose earlier.
You’ll be presented with a screen similar to this.

[image:]

Type:

sed -i 's/^PermitRootLogin.*/PermitRootLogin yes/' /etc/ssh/sshd_config

and press enter. Then,

/etc/init.d/ssh restart

and enter to restart SSH. Logout by typing ‘logout’ and pressing ‘enter’.

Connecting to the VM

After the VM has booted you can connect to it using SSH, and files can be copied from and to the VM using a SFTP utility.
Connect to localhost, port 22222 (or the port configured when installing the VM).
On Windows you can use putty [http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html] and WinSCP [http://winscp.net/eng/index.php].

For example, to connect as root from a Linux command prompt use

$ ssh root@localhost -p 22222
The authenticity of host '[localhost]:22222 ([127.0.0.1]:22222)' can't be established.
RSA key fingerprint is ae:f5:c8:9f:17:c6:c7:1b:c2:1b:12:31:1d:bb:d0:c7.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '[localhost]:22222' (RSA) to the list of known hosts.
root@localhost's password: (enter root password configured during install)

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
root@debian:~#

Replace root with debian to log in as user.

Setting up Debian for Gitian building

In this section we will be setting up the Debian installation for Gitian building.

First we need to log in as root to set up dependencies and make sure that our
user can use the sudo command. Type/paste the following in the terminal:

apt-get install git ruby sudo apt-cacher-ng qemu-utils debootstrap lxc python-cheetah parted kpartx bridge-utils make ubuntu-archive-keyring curl
adduser debian sudo

Then set up LXC and the rest with the following, which is a complex jumble of settings and workarounds:

the version of lxc-start in Debian needs to run as root, so make sure
that the build script can execute it without providing a password
echo "%sudo ALL=NOPASSWD: /usr/bin/lxc-start" > /etc/sudoers.d/gitian-lxc
echo "%sudo ALL=NOPASSWD: /usr/bin/lxc-execute" >> /etc/sudoers.d/gitian-lxc
make /etc/rc.local script that sets up bridge between guest and host
echo '#!/bin/sh -e' > /etc/rc.local
echo 'brctl addbr br0' >> /etc/rc.local
echo 'ifconfig br0 10.0.3.2/24 up' >> /etc/rc.local
echo 'iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE' >> /etc/rc.local
echo 'echo 1 > /proc/sys/net/ipv4/ip_forward' >> /etc/rc.local
echo 'exit 0' >> /etc/rc.local
make sure that USE_LXC is always set when logging in as debian,
and configure LXC IP addresses
echo 'export USE_LXC=1' >> /home/debian/.profile
echo 'export GITIAN_HOST_IP=10.0.3.2' >> /home/debian/.profile
echo 'export LXC_GUEST_IP=10.0.3.5' >> /home/debian/.profile
reboot

At the end the VM is rebooted to make sure that the changes take effect. The steps in this
section only need to be performed once.

Installing Gitian

Re-login as the user debian that was created during installation.
The rest of the steps in this guide will be performed as that user.

There is no python-vm-builder package in Debian, so we need to install it from source ourselves,

wget http://archive.ubuntu.com/ubuntu/pool/universe/v/vm-builder/vm-builder_0.12.4+bzr494.orig.tar.gz
echo "76cbf8c52c391160b2641e7120dbade5afded713afaa6032f733a261f13e6a8e vm-builder_0.12.4+bzr494.orig.tar.gz" | sha256sum -c
(verification -- must return OK)
tar -zxvf vm-builder_0.12.4+bzr494.orig.tar.gz
cd vm-builder-0.12.4+bzr494
sudo python setup.py install
cd ..

Note: When sudo asks for a password, enter the password for the user debian not for root.

Clone the git repositories for bitcoin and Gitian.

git clone https://github.com/devrandom/gitian-builder.git
git clone https://github.com/bitcoin/bitcoin
git clone https://github.com/bitcoin/gitian.sigs.git

Setting up the Gitian image

Gitian needs a virtual image of the operating system to build in.
Currently this is Ubuntu Precise x86_64.
This image will be copied and used every time that a build is started to
make sure that the build is deterministic.
Creating the image will take a while, but only has to be done once.

Execute the following as user debian:

cd gitian-builder
bin/make-base-vm --lxc --arch amd64 --suite trusty

There will be a lot of warnings printed during the build of the image. These can be ignored.

Note: When sudo asks for a password, enter the password for the user debian not for root.

Getting and building the inputs

Follow the instructions in doc/release-process.md
in the bitcoin repository under ‘Fetch and build inputs’ to install sources which require
manual intervention. Also optionally follow the next step: ‘Seed the Gitian sources cache
and offline git repositories’ which will fetch the remaining files required for building
offline.

Building Bitcoin

To build Bitcoin (for Linux, OS X and Windows) just follow the steps under ‘perform
Gitian builds’ in doc/release-process.md in the bitcoin repository.

This may take some time as it will build all the dependencies needed for each descriptor.
These dependencies will be cached after a successful build to avoid rebuilding them when possible.

At any time you can check the package installation and build progress with

tail -f var/install.log
tail -f var/build.log

Output from gbuild will look something like

Initialized empty Git repository in /home/debian/gitian-builder/inputs/bitcoin/.git/
remote: Counting objects: 57959, done.
remote: Total 57959 (delta 0), reused 0 (delta 0), pack-reused 57958
Receiving objects: 100% (57959/57959), 53.76 MiB | 484.00 KiB/s, done.
Resolving deltas: 100% (41590/41590), done.
From https://github.com/bitcoin/bitcoin
... (new tags, new branch etc)
--- Building for precise amd64 ---
Stopping target if it is up
Making a new image copy
stdin: is not a tty
Starting target
Checking if target is up
Preparing build environment
Updating apt-get repository (log in var/install.log)
Installing additional packages (log in var/install.log)
Grabbing package manifest
stdin: is not a tty
Creating build script (var/build-script)
lxc-start: Connection refused - inotify event with no name (mask 32768)
Running build script (log in var/build.log)

Building an alternative repository

If you want to do a test build of a pull on GitHub it can be useful to point
the Gitian builder at an alternative repository, using the same descriptors
and inputs.

For example:

URL=https://github.com/laanwj/bitcoin.git
COMMIT=2014_03_windows_unicode_path
./bin/gbuild --commit bitcoin=${COMMIT} --url bitcoin=${URL} ../bitcoin/contrib/gitian-descriptors/gitian-linux.yml
./bin/gbuild --commit bitcoin=${COMMIT} --url bitcoin=${URL} ../bitcoin/contrib/gitian-descriptors/gitian-win.yml
./bin/gbuild --commit bitcoin=${COMMIT} --url bitcoin=${URL} ../bitcoin/contrib/gitian-descriptors/gitian-osx.yml

Building fully offline

For building fully offline including attaching signatures to unsigned builds, the detached-sigs repository
and the bitcoin git repository with the desired tag must both be available locally, and then gbuild must be
told where to find them. It also requires an apt-cacher-ng which is fully-populated but set to offline mode, or
manually disabling gitian-builder’s use of apt-get to update the VM build environment.

To configure apt-cacher-ng as an offline cacher, you will need to first populate its cache with the relevant
files. You must additionally patch target-bin/bootstrap-fixup to set its apt sources to something other than
plain archive.ubuntu.com: us.archive.ubuntu.com works.

So, if you use LXC:

export PATH="$PATH":/path/to/gitian-builder/libexec
export USE_LXC=1
cd /path/to/gitian-builder
./libexec/make-clean-vm --suite precise --arch amd64

LXC_ARCH=amd64 LXC_SUITE=precise on-target -u root apt-get update
LXC_ARCH=amd64 LXC_SUITE=precise on-target -u root \
 -e DEBIAN_FRONTEND=noninteractive apt-get --no-install-recommends -y install \
 $(sed -ne '/^packages:/,/[^-] .*/ {/^- .*/{s/"//g;s/- //;p}}' ../bitcoin/contrib/gitian-descriptors/*|sort|uniq)
LXC_ARCH=amd64 LXC_SUITE=precise on-target -u root apt-get -q -y purge grub
LXC_ARCH=amd64 LXC_SUITE=precise on-target -u root -e DEBIAN_FRONTEND=noninteractive apt-get -y dist-upgrade

And then set offline mode for apt-cacher-ng:

/etc/apt-cacher-ng/acng.conf
[...]
Offlinemode: 1
[...]

service apt-cacher-ng restart

Then when building, override the remote URLs that gbuild would otherwise pull from the Gitian descriptors::

cd /some/root/path/
git clone https://github.com/bitcoin/bitcoin-detached-sigs.git

BTCPATH=/some/root/path/bitcoin.git
SIGPATH=/some/root/path/bitcoin-detached-sigs.git

./bin/gbuild --url bitcoin=${BTCPATH},signature=${SIGPATH} ../bitcoin/contrib/gitian-descriptors/gitian-win-signer.yml

Signing externally

If you want to do the PGP signing on another device, that’s also possible; just define SIGNER as mentioned
and follow the steps in the build process as normal.

gpg: skipped "laanwj": secret key not available

When you execute gsign you will get an error from GPG, which can be ignored. Copy the resulting .assert files
in gitian.sigs to your signing machine and do

 gpg --detach-sign ${VERSION}-linux/${SIGNER}/bitcoin-linux-build.assert
 gpg --detach-sign ${VERSION}-win/${SIGNER}/bitcoin-win-build.assert
 gpg --detach-sign ${VERSION}-osx-unsigned/${SIGNER}/bitcoin-osx-build.assert

This will create the .sig files that can be committed together with the .assert files to assert your
Gitian build.

Uploading signatures

After building and signing you can push your signatures (both the .assert and .assert.sig files) to the
bitcoin/gitian.sigs [https://github.com/bitcoin/gitian.sigs/] repository, or if that’s not possible create a pull
request. You can also mail the files to Wladimir (laanwj@gmail.com) and he will commit them.

 Sample init scripts and service configuration for bitcoind

Sample init scripts and service configuration for bitcoind

Sample scripts and configuration files for systemd, Upstart and OpenRC
can be found in the contrib/init folder.

contrib/init/bitcoind.service: systemd service unit configuration
contrib/init/bitcoind.openrc: OpenRC compatible SysV style init script
contrib/init/bitcoind.openrcconf: OpenRC conf.d file
contrib/init/bitcoind.conf: Upstart service configuration file
contrib/init/bitcoind.init: CentOS compatible SysV style init script

	Service User

All three Linux startup configurations assume the existence of a “bitcoin” user
and group. They must be created before attempting to use these scripts.
The OS X configuration assumes bitcoind will be set up for the current user.

	Configuration

At a bare minimum, bitcoind requires that the rpcpassword setting be set
when running as a daemon. If the configuration file does not exist or this
setting is not set, bitcoind will shutdown promptly after startup.

This password does not have to be remembered or typed as it is mostly used
as a fixed token that bitcoind and client programs read from the configuration
file, however it is recommended that a strong and secure password be used
as this password is security critical to securing the wallet should the
wallet be enabled.

If bitcoind is run with the “-server” flag (set by default), and no rpcpassword is set,
it will use a special cookie file for authentication. The cookie is generated with random
content when the daemon starts, and deleted when it exits. Read access to this file
controls who can access it through RPC.

By default the cookie is stored in the data directory, but it’s location can be overridden
with the option ‘-rpccookiefile’.

This allows for running bitcoind without having to do any manual configuration.

conf, pid, and wallet accept relative paths which are interpreted as
relative to the data directory. wallet only supports relative paths.

For an example configuration file that describes the configuration settings,
see contrib/debian/examples/bitcoin.conf.

	Paths

3a) Linux

All three configurations assume several paths that might need to be adjusted.

Binary: /usr/bin/bitcoindConfiguration file: /etc/bitcoin/bitcoin.confData directory: /var/lib/bitcoindPID file: /var/run/bitcoind/bitcoind.pid (OpenRC and Upstart) or /var/lib/bitcoind/bitcoind.pid (systemd)Lock file: /var/lock/subsys/bitcoind (CentOS)

The configuration file, PID directory (if applicable) and data directory
should all be owned by the bitcoin user and group. It is advised for security
reasons to make the configuration file and data directory only readable by the
bitcoin user and group. Access to bitcoin-cli and other bitcoind rpc clients
can then be controlled by group membership.

3b) Mac OS X

Binary: /usr/local/bin/bitcoindConfiguration file: ~/Library/Application Support/Bitcoin/bitcoin.confData directory: ~/Library/Application Support/Bitcoin
Lock file: ~/Library/Application Support/Bitcoin/.lock

	Installing Service Configuration

4a) systemd

Installing this .service file consists of just copying it to
/usr/lib/systemd/system directory, followed by the command
systemctl daemon-reload in order to update running systemd configuration.

To test, run systemctl start bitcoind and to enable for system startup run
systemctl enable bitcoind

4b) OpenRC

Rename bitcoind.openrc to bitcoind and drop it in /etc/init.d. Double
check ownership and permissions and make it executable. Test it with
/etc/init.d/bitcoind start and configure it to run on startup with
rc-update add bitcoind

4c) Upstart (for Debian/Ubuntu based distributions)

Drop bitcoind.conf in /etc/init. Test by running service bitcoind start
it will automatically start on reboot.

NOTE: This script is incompatible with CentOS 5 and Amazon Linux 2014 as they
use old versions of Upstart and do not supply the start-stop-daemon utility.

4d) CentOS

Copy bitcoind.init to /etc/init.d/bitcoind. Test by running service bitcoind start.

Using this script, you can adjust the path and flags to the bitcoind program by
setting the BITCOIND and FLAGS environment variables in the file
/etc/sysconfig/bitcoind. You can also use the DAEMONOPTS environment variable here.

4e) Mac OS X

Copy org.bitcoin.bitcoind.plist into ~/Library/LaunchAgents. Load the launch agent by
running launchctl load ~/Library/LaunchAgents/org.bitcoin.bitcoind.plist.

This Launch Agent will cause bitcoind to start whenever the user logs in.

NOTE: This approach is intended for those wanting to run bitcoind as the current user.
You will need to modify org.bitcoin.bitcoind.plist if you intend to use it as a
Launch Daemon with a dedicated bitcoin user.

	Auto-respawn

Auto respawning is currently only configured for Upstart and systemd.
Reasonable defaults have been chosen but YMMV.

 Multiwallet Qt Development and Integration Strategy

Multiwallet Qt Development and Integration Strategy

In order to support loading of multiple wallets in bitcoin-qt, a few changes in the UI architecture will be needed.
Fortunately, only four of the files in the existing project are affected by this change.

Two new classes have been implemented in two new .h/.cpp file pairs, with much of the functionality that was previously
implemented in the BitcoinGUI class moved over to these new classes.

The two existing files most affected, by far, are bitcoingui.h and bitcoingui.cpp, as the BitcoinGUI class will require
some major retrofitting.

Only requiring some minor changes is bitcoin.cpp.

Finally, two new headers and source files will have to be added to bitcoin-qt.pro.

Changes to class BitcoinGUI

The principal change to the BitcoinGUI class concerns the QStackedWidget instance called centralWidget.
This widget owns five page views: overviewPage, transactionsPage, addressBookPage, receiveCoinsPage, and sendCoinsPage.

A new class called WalletView inheriting from QStackedWidget has been written to handle all renderings and updates of
these page views. In addition to owning these five page views, a WalletView also has a pointer to a WalletModel instance.
This allows the construction of multiple WalletView objects, each rendering a distinct wallet.

A second class called WalletFrame inheriting from QFrame has been written as a container for embedding all wallet-related
controls into BitcoinGUI. At present it contains the WalletView instances for the wallets and does little more than passing on messages
from BitcoinGUI to the currently selected WalletView. It is a WalletFrame instance
that takes the place of what used to be centralWidget in BitcoinGUI. The purpose of this class is to allow future
refinements of the wallet controls with minimal need for further modifications to BitcoinGUI, thus greatly simplifying
merges while reducing the risk of breaking top-level stuff.

Changes to bitcoin.cpp

bitcoin.cpp is the entry point into bitcoin-qt, and as such, will require some minor modifications to provide hooks for
multiple wallet support. Most importantly will be the way it instantiates WalletModels and passes them to the
singleton BitcoinGUI instance called window. Formerly, BitcoinGUI kept a pointer to a single instance of a WalletModel.
The initial change required is very simple: rather than calling window.setWalletModel(&walletModel); we perform the
following two steps:

window.addWallet("~Default", &walletModel);
window.setCurrentWallet("~Default");

The string parameter is just an arbitrary name given to the default wallet. It’s been prepended with a tilde to avoid name collisions in the future with additional wallets.

The shutdown call window.setWalletModel(0) has also been removed. In its place is now:

window.removeAllWallets();

 Reduce Traffic

Reduce Traffic

Some node operators need to deal with bandwidth caps imposed by their ISPs.

By default, bitcoin-core allows up to 125 connections to different peers, 8 of
which are outbound. You can therefore, have at most 117 inbound connections.

The default settings can result in relatively significant traffic consumption.

Ways to reduce traffic:

1. Use -maxuploadtarget=<MiB per day>

A major component of the traffic is caused by serving historic blocks to other nodes
during the initial blocks download phase (syncing up a new node).
This option can be specified in MiB per day and is turned off by default.
This is not a hard limit; only a threshold to minimize the outbound
traffic. When the limit is about to be reached, the uploaded data is cut by no
longer serving historic blocks (blocks older than one week).
Keep in mind that new nodes require other nodes that are willing to serve
historic blocks. The recommended minimum is 144 blocks per day (max. 144MB
per day)

Whitelisted peers will never be disconnected, although their traffic counts for
calculating the target.

2. Disable “listening” (-listen=0)

Disabling listening will result in fewer nodes connected (remember the maximum of 8
outbound peers). Fewer nodes will result in less traffic usage as you are relaying
blocks and transactions to fewer nodes.

3. Reduce maximum connections (-maxconnections=<num>)

Reducing the maximum connected nodes to a minimum could be desirable if traffic
limits are tiny. Keep in mind that bitcoin’s trustless model works best if you are
connected to a handful of nodes.

 Notable changes

 (note: this is a temporary file, to be added-to by anybody, and moved to
release-notes at release time)

Notable changes

Example item

bitcoin-cli: arguments privacy

The RPC command line client gained a new argument, -stdin
to read extra arguments from standard input, one per line until EOF/Ctrl-D.
For example:

$ echo -e "mysecretcode\n120" | src/bitcoin-cli -stdin walletpassphrase

It is recommended to use this for sensitive information such as wallet
passphrases, as command-line arguments can usually be read from the process
table by any user on the system.

0.13.0 Change log

Detailed release notes follow. This overview includes changes that affect
behavior, not code moves, refactors and string updates. For convenience in locating
the code changes and accompanying discussion, both the pull request and
git merge commit are mentioned.

RPC and REST

Asm script outputs now contain OP_CHECKLOCKTIMEVERIFY in place of OP_NOP2

OP_NOP2 has been renamed to OP_CHECKLOCKTIMEVERIFY by BIP
65 [https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki]

The following outputs are affected by this change:

	RPC getrawtransaction (in verbose mode)

	RPC decoderawtransaction

	RPC decodescript

	REST /rest/tx/ (JSON format)

	REST /rest/block/ (JSON format when including extended tx details)

	bitcoin-tx -json

Configuration and command-line options

Block and transaction handling

P2P protocol and network code

Validation

Build system

Wallet

GUI

Tests

Miscellaneous

 Release Process

Release Process

	Update translations (ping wumpus, Diapolo or tcatm on IRC) see translation_process.md [https://github.com/bitcoin/bitcoin/blob/master/doc/translation_process.md#syncing-with-transifex]

	Update bips.md to account for changes since the last release.

	Update hardcoded seeds

###First time / New builders
Check out the source code in the following directory hierarchy.

cd /path/to/your/toplevel/build
git clone https://github.com/bitcoin/gitian.sigs.git
git clone https://github.com/bitcoin/bitcoin-detached-sigs.git
git clone https://github.com/devrandom/gitian-builder.git
git clone https://github.com/bitcoin/bitcoin.git

###Bitcoin maintainers/release engineers, update (commit) version in sources

pushd ./bitcoin
contrib/verifysfbinaries/verify.sh
configure.ac
doc/README*
doc/Doxyfile
contrib/gitian-descriptors/*.yml
src/clientversion.h (change CLIENT_VERSION_IS_RELEASE to true)

tag version in git

git tag -s v(new version, e.g. 0.8.0)

write release notes. git shortlog helps a lot, for example:

git shortlog --no-merges v(current version, e.g. 0.7.2)..v(new version, e.g. 0.8.0)
popd

###Setup and perform Gitian builds

Setup Gitian descriptors:

pushd ./bitcoin
export SIGNER=(your Gitian key, ie bluematt, sipa, etc)
export VERSION=(new version, e.g. 0.8.0)
git fetch
git checkout v${VERSION}
popd

Ensure your gitian.sigs are up-to-date if you wish to gverify your builds against other Gitian signatures.

pushd ./gitian.sigs
git pull
popd

Ensure gitian-builder is up-to-date to take advantage of new caching features (e9741525c or later is recommended).

pushd ./gitian-builder
git pull

###Fetch and create inputs: (first time, or when dependency versions change)

mkdir -p inputs
wget -P inputs https://bitcoincore.org/cfields/osslsigncode-Backports-to-1.7.1.patch
wget -P inputs http://downloads.sourceforge.net/project/osslsigncode/osslsigncode/osslsigncode-1.7.1.tar.gz

Register and download the Apple SDK: see OS X readme for details.

https://developer.apple.com/devcenter/download.action?path=/Developer_Tools/xcode_6.1.1/xcode_6.1.1.dmg

Using a Mac, create a tarball for the 10.9 SDK and copy it to the inputs directory:

tar -C /Volumes/Xcode/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/ -czf MacOSX10.9.sdk.tar.gz MacOSX10.9.sdk

###Optional: Seed the Gitian sources cache and offline git repositories

By default, Gitian will fetch source files as needed. To cache them ahead of time:

make -C ../bitcoin/depends download SOURCES_PATH=`pwd`/cache/common

Only missing files will be fetched, so this is safe to re-run for each build.

NOTE: Offline builds must use the –url flag to ensure Gitian fetches only from local URLs. For example:

./bin/gbuild --url bitcoin=/path/to/bitcoin,signature=/path/to/sigs {rest of arguments}

The gbuild invocations below DO NOT DO THIS by default.

###Build and sign Bitcoin Core for Linux, Windows, and OS X:

./bin/gbuild --commit bitcoin=v${VERSION} ../bitcoin/contrib/gitian-descriptors/gitian-linux.yml
./bin/gsign --signer $SIGNER --release ${VERSION}-linux --destination ../gitian.sigs/ ../bitcoin/contrib/gitian-descriptors/gitian-linux.yml
mv build/out/bitcoin-*.tar.gz build/out/src/bitcoin-*.tar.gz ../

./bin/gbuild --commit bitcoin=v${VERSION} ../bitcoin/contrib/gitian-descriptors/gitian-win.yml
./bin/gsign --signer $SIGNER --release ${VERSION}-win-unsigned --destination ../gitian.sigs/ ../bitcoin/contrib/gitian-descriptors/gitian-win.yml
mv build/out/bitcoin-*-win-unsigned.tar.gz inputs/bitcoin-win-unsigned.tar.gz
mv build/out/bitcoin-*.zip build/out/bitcoin-*.exe ../

./bin/gbuild --commit bitcoin=v${VERSION} ../bitcoin/contrib/gitian-descriptors/gitian-osx.yml
./bin/gsign --signer $SIGNER --release ${VERSION}-osx-unsigned --destination ../gitian.sigs/ ../bitcoin/contrib/gitian-descriptors/gitian-osx.yml
mv build/out/bitcoin-*-osx-unsigned.tar.gz inputs/bitcoin-osx-unsigned.tar.gz
mv build/out/bitcoin-*.tar.gz build/out/bitcoin-*.dmg ../

Build output expected:

	source tarball (bitcoin-${VERSION}.tar.gz)

	linux 32-bit and 64-bit dist tarballs (bitcoin-${VERSION}-linux[32|64].tar.gz)

	windows 32-bit and 64-bit unsigned installers and dist zips (bitcoin-${VERSION}-win[32|64]-setup-unsigned.exe, bitcoin-${VERSION}-win[32|64].zip)

	OS X unsigned installer and dist tarball (bitcoin-${VERSION}-osx-unsigned.dmg, bitcoin-${VERSION}-osx64.tar.gz)

	Gitian signatures (in gitian.sigs/${VERSION}-<linux|{win,osx}-unsigned>/(your Gitian key)/

###Verify other gitian builders signatures to your own. (Optional)

Add other gitian builders keys to your gpg keyring

gpg --import ../bitcoin/contrib/gitian-downloader/*.pgp

Verify the signatures

./bin/gverify -v -d ../gitian.sigs/ -r ${VERSION}-linux ../bitcoin/contrib/gitian-descriptors/gitian-linux.yml
./bin/gverify -v -d ../gitian.sigs/ -r ${VERSION}-win-unsigned ../bitcoin/contrib/gitian-descriptors/gitian-win.yml
./bin/gverify -v -d ../gitian.sigs/ -r ${VERSION}-osx-unsigned ../bitcoin/contrib/gitian-descriptors/gitian-osx.yml

popd

###Next steps:

Commit your signature to gitian.sigs:

pushd gitian.sigs
git add ${VERSION}-linux/${SIGNER}
git add ${VERSION}-win-unsigned/${SIGNER}
git add ${VERSION}-osx-unsigned/${SIGNER}
git commit -a
git push # Assuming you can push to the gitian.sigs tree
popd

Wait for Windows/OS X detached signatures:
Once the Windows/OS X builds each have 3 matching signatures, they will be signed with their respective release keys.
Detached signatures will then be committed to the bitcoin-detached-sigs [https://github.com/bitcoin/bitcoin-detached-sigs] repository, which can be combined with the unsigned apps to create signed binaries.

Create (and optionally verify) the signed OS X binary:

pushd ./gitian-builder
./bin/gbuild -i --commit signature=v${VERSION} ../bitcoin/contrib/gitian-descriptors/gitian-osx-signer.yml
./bin/gsign --signer $SIGNER --release ${VERSION}-osx-signed --destination ../gitian.sigs/ ../bitcoin/contrib/gitian-descriptors/gitian-osx-signer.yml
./bin/gverify -v -d ../gitian.sigs/ -r ${VERSION}-osx-signed ../bitcoin/contrib/gitian-descriptors/gitian-osx-signer.yml
mv build/out/bitcoin-osx-signed.dmg ../bitcoin-${VERSION}-osx.dmg
popd

Create (and optionally verify) the signed Windows binaries:

pushd ./gitian-builder
./bin/gbuild -i --commit signature=v${VERSION} ../bitcoin/contrib/gitian-descriptors/gitian-win-signer.yml
./bin/gsign --signer $SIGNER --release ${VERSION}-win-signed --destination ../gitian.sigs/ ../bitcoin/contrib/gitian-descriptors/gitian-win-signer.yml
./bin/gverify -v -d ../gitian.sigs/ -r ${VERSION}-win-signed ../bitcoin/contrib/gitian-descriptors/gitian-win-signer.yml
mv build/out/bitcoin-*win64-setup.exe ../bitcoin-${VERSION}-win64-setup.exe
mv build/out/bitcoin-*win32-setup.exe ../bitcoin-${VERSION}-win32-setup.exe
popd

Commit your signature for the signed OS X/Windows binaries:

pushd gitian.sigs
git add ${VERSION}-osx-signed/${SIGNER}
git add ${VERSION}-win-signed/${SIGNER}
git commit -a
git push # Assuming you can push to the gitian.sigs tree
popd

After 3 or more people have gitian-built and their results match:

	Create SHA256SUMS.asc for the builds, and GPG-sign it:

sha256sum * > SHA256SUMS
gpg --digest-algo sha256 --clearsign SHA256SUMS # outputs SHA256SUMS.asc
rm SHA256SUMS

(the digest algorithm is forced to sha256 to avoid confusion of the Hash: header that GPG adds with the SHA256 used for the files)
Note: check that SHA256SUMS itself doesn’t end up in SHA256SUMS, which is a spurious/nonsensical entry.

	Upload zips and installers, as well as SHA256SUMS.asc from last step, to the bitcoin.org server
into /var/www/bin/bitcoin-core-${VERSION}

	Update bitcoin.org version

	First, check to see if the Bitcoin.org maintainers have prepared a
release: https://github.com/bitcoin-dot-org/bitcoin.org/labels/Releases

	If they have, it will have previously failed their Travis CI
checks because the final release files weren’t uploaded.
Trigger a Travis CI rebuild—if it passes, merge.

	If they have not prepared a release, follow the Bitcoin.org release
instructions: https://github.com/bitcoin-dot-org/bitcoin.org#release-notes

	After the pull request is merged, the website will automatically show the newest version within 15 minutes, as well
as update the OS download links. Ping @saivann/@harding (saivann/harding on Freenode) in case anything goes wrong

	Announce the release:

	Release sticky on bitcointalk: https://bitcointalk.org/index.php?board=1.0

	Bitcoin-development mailing list

	Update title of #bitcoin on Freenode IRC

	Optionally reddit /r/Bitcoin, … but this will usually sort out itself

	Notify BlueMatt so that he can start building the PPAs [https://launchpad.net/~bitcoin/+archive/ubuntu/bitcoin]

	Add release notes for the new version to the directory doc/release-notes in git master

	Celebrate

 Shared Libraries

Shared Libraries

bitcoinconsensus

The purpose of this library is to make the verification functionality that is critical to Bitcoin’s consensus available to other applications, e.g. to language bindings.

API

The interface is defined in the C header bitcoinconsensus.h located in src/script/bitcoinconsensus.h.

Version

bitcoinconsensus_version returns an unsigned int with the API version (currently at an experimental 0).

Script Validation

bitcoinconsensus_verify_script returns an int with the status of the verification. It will be 1 if the input script correctly spends the previous output scriptPubKey.

Parameters

	const unsigned char *scriptPubKey - The previous output script that encumbers spending.

	unsigned int scriptPubKeyLen - The number of bytes for the scriptPubKey.

	const unsigned char *txTo - The transaction with the input that is spending the previous output.

	unsigned int txToLen - The number of bytes for the txTo.

	unsigned int nIn - The index of the input in txTo that spends the scriptPubKey.

	unsigned int flags - The script validation flags (see below).

	bitcoinconsensus_error* err - Will have the error/success code for the operation (see below).

Script Flags

	bitcoinconsensus_SCRIPT_FLAGS_VERIFY_NONE

	bitcoinconsensus_SCRIPT_FLAGS_VERIFY_P2SH - Evaluate P2SH (BIP16 [https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki]) subscripts

	bitcoinconsensus_SCRIPT_FLAGS_VERIFY_DERSIG - Enforce strict DER (BIP66 [https://github.com/bitcoin/bips/blob/master/bip-0066.mediawiki]) compliance

Errors

	bitcoinconsensus_ERR_OK - No errors with input parameters (see the return value of bitcoinconsensus_verify_script for the verification status)

	bitcoinconsensus_ERR_TX_INDEX - An invalid index for txTo

	bitcoinconsensus_ERR_TX_SIZE_MISMATCH - txToLen did not match with the size of txTo

	bitcoinconsensus_ERR_DESERIALIZE - An error deserializing txTo

Example Implementations

	NBitcoin [https://github.com/NicolasDorier/NBitcoin/blob/master/NBitcoin/Script.cs#L814] (.NET Bindings)

	node-libbitcoinconsensus [https://github.com/bitpay/node-libbitcoinconsensus] (Node.js Bindings)

	java-libbitcoinconsensus [https://github.com/dexX7/java-libbitcoinconsensus] (Java Bindings)

	bitcoinconsensus-php [https://github.com/Bit-Wasp/bitcoinconsensus-php] (PHP Bindings)

 TOR SUPPORT IN BITCOIN

TOR SUPPORT IN BITCOIN

It is possible to run Bitcoin as a Tor hidden service, and connect to such services.

The following directions assume you have a Tor proxy running on port 9050. Many distributions default to having a SOCKS proxy listening on port 9050, but others may not. In particular, the Tor Browser Bundle defaults to listening on a random port. See Tor Project FAQ:TBBSocksPort [https://www.torproject.org/docs/faq.html.en#TBBSocksPort] for how to properly
configure Tor.

	Run bitcoin behind a Tor proxy

The first step is running Bitcoin behind a Tor proxy. This will already make all
outgoing connections be anonymized, but more is possible.

-proxy=ip:port Set the proxy server. If SOCKS5 is selected (default), this proxy
 server will be used to try to reach .onion addresses as well.

-onion=ip:port Set the proxy server to use for tor hidden services. You do not
 need to set this if it's the same as -proxy. You can use -noonion
 to explicitly disable access to hidden service.

-listen When using -proxy, listening is disabled by default. If you want
 to run a hidden service (see next section), you'll need to enable
 it explicitly.

-connect=X When behind a Tor proxy, you can specify .onion addresses instead
-addnode=X of IP addresses or hostnames in these parameters. It requires
-seednode=X SOCKS5. In Tor mode, such addresses can also be exchanged with
 other P2P nodes.

In a typical situation, this suffices to run behind a Tor proxy:

./bitcoin -proxy=127.0.0.1:9050

	Run a bitcoin hidden server

If you configure your Tor system accordingly, it is possible to make your node also
reachable from the Tor network. Add these lines to your /etc/tor/torrc (or equivalent
config file):

HiddenServiceDir /var/lib/tor/bitcoin-service/
HiddenServicePort 8333 127.0.0.1:8333
HiddenServicePort 18333 127.0.0.1:18333

The directory can be different of course, but (both) port numbers should be equal to
your bitcoind’s P2P listen port (8333 by default).

-externalip=X You can tell bitcoin about its publicly reachable address using
 this option, and this can be a .onion address. Given the above
 configuration, you can find your onion address in
 /var/lib/tor/bitcoin-service/hostname. Onion addresses are given
 preference for your node to advertise itself with, for connections
 coming from unroutable addresses (such as 127.0.0.1, where the
 Tor proxy typically runs).

-listen You'll need to enable listening for incoming connections, as this
 is off by default behind a proxy.

-discover When -externalip is specified, no attempt is made to discover local
 IPv4 or IPv6 addresses. If you want to run a dual stack, reachable
 from both Tor and IPv4 (or IPv6), you'll need to either pass your
 other addresses using -externalip, or explicitly enable -discover.
 Note that both addresses of a dual-stack system may be easily
 linkable using traffic analysis.

In a typical situation, where you’re only reachable via Tor, this should suffice:

./bitcoind -proxy=127.0.0.1:9050 -externalip=57qr3yd1nyntf5k.onion -listen

(obviously, replace the Onion address with your own). It should be noted that you still
listen on all devices and another node could establish a clearnet connection, when knowing
your address. To mitigate this, additionally bind the address of your Tor proxy:

./bitcoind ... -bind=127.0.0.1

If you don’t care too much about hiding your node, and want to be reachable on IPv4
as well, use discover instead:

./bitcoind ... -discover

and open port 8333 on your firewall (or use -upnp).

If you only want to use Tor to reach onion addresses, but not use it as a proxy
for normal IPv4/IPv6 communication, use:

./bitcoin -onion=127.0.0.1:9050 -externalip=57qr3yd1nyntf5k.onion -discover

	Automatically listen on Tor

Starting with Tor version 0.2.7.1 it is possible, through Tor’s control socket
API, to create and destroy ‘ephemeral’ hidden services programmatically.
Bitcoin Core has been updated to make use of this.

This means that if Tor is running (and proper authorization is available),
Bitcoin Core automatically creates a hidden service to listen on, without
manual configuration. This will positively affect the number of available
.onion nodes.

This new feature is enabled by default if Bitcoin Core is listening, and
a connection to Tor can be made. It can be configured with the -listenonion,
-torcontrol and -torpassword settings. To show verbose debugging
information, pass -debug=tor.

 Translations

Translations

The Bitcoin-Core project has been designed to support multiple localisations. This makes adding new phrases, and completely new languages easily achievable. For managing all application translations, Bitcoin-Core makes use of the Transifex online translation management tool.

Helping to translate (using Transifex)

Transifex is setup to monitor the Github repo for updates, and when code containing new translations is found, Transifex will process any changes. It may take several hours after a pull-request has been merged, to appear in the Transifex web interface.

Multiple language support is critical in assisting Bitcoin’s global adoption, and growth. One of Bitcoin’s greatest strengths is cross-boarder money transfers, any help making that easier is greatly appreciated.

See the Transifex Bitcoin project [https://www.transifex.com/projects/p/bitcoin/] to assist in translations. You should also join the translation mailing list for announcements - see details below.

Writing code with translations

We use automated scripts to help extract translations in both Qt, and non-Qt source files. It is rarely necessary to manually edit the files in src/qt/locale/. The translation source files must adhere to the following format:
bitcoin_xx_YY.ts or bitcoin_xx.ts

src/qt/locale/bitcoin_en.ts is treated in a special way. It is used as the source for all other translations. Whenever a string in the source code is changed, this file must be updated to reflect those changes. A custom script is used to extract strings from the non-Qt parts. This script makes use of gettext, so make sure that utility is installed (ie, apt-get install gettext on Ubuntu/Debian). Once this has been updated, lupdate (included in the Qt SDK) is used to update bitcoin_en.ts.

To automatically regenerate the bitcoin_en.ts file, run the following commands:

cd src/
make translate

contrib/bitcoin-qt.pro takes care of generating .qm (binary compiled) files from .ts (source files) files. It’s mostly automated, and you shouldn’t need to worry about it.

Example Qt translation

QToolBar *toolbar = addToolBar(tr("Tabs toolbar"));

Creating a pull-request

For general PRs, you shouldn’t include any updates to the translation source files. They will be updated periodically, primarily around pre-releases, allowing time for any new phrases to be translated before public releases. This is also important in avoiding translation related merge conflicts.

When an updated source file is merged into the Github repo, Transifex will automatically detect it (although it can take several hours). Once processed, the new strings will show up as “Remaining” in the Transifex web interface and are ready for translators.

To create the pull-request, use the following commands:

git add src/qt/bitcoinstrings.cpp src/qt/locale/bitcoin_en.ts
git commit

Creating a Transifex account

Visit the Transifex Signup [https://www.transifex.com/signup/] page to create an account. Take note of your username and password, as they will be required to configure the command-line tool.

You can find the Bitcoin translation project at https://www.transifex.com/projects/p/bitcoin/.

Installing the Transifex client command-line tool

The client it used to fetch updated translations. If you are having problems, or need more details, see http://docs.transifex.com/developer/client/setup

For Linux and Mac

pip install transifex-client

Setup your transifex client config as follows. Please ignore the token field.

nano ~/.transifexrc

[https://www.transifex.com]
hostname = https://www.transifex.com
password = PASSWORD
token =
username = USERNAME

For Windows

Please see http://docs.transifex.com/developer/client/setup#windows for details on installation.

The Transifex Bitcoin project config file is included as part of the repo. It can be found at .tx/config, however you shouldn’t need change anything.

Synchronising translations

To assist in updating translations, we have created a script to help.

	python contrib/devtools/update-translations.py

	Update src/qt/bitcoin_locale.qrc manually or via
ls src/qt/locale/*ts|xargs -n1 basename|sed 's/\(bitcoin_\(.*\)\).ts/<file alias="\2">locale\/\1.qm<\/file>/'

	Update src/Makefile.qt.include manually or via
ls src/qt/locale/*ts|xargs -n1 basename|sed 's/\(bitcoin_\(.*\)\).ts/ qt\/locale\/\1.ts \\/'

	git add new translations from src/qt/locale/

Do not directly download translations one by one from the Transifex website, as we do a few post-processing steps before committing the translations.

Handling Plurals (in source files)

When new plurals are added to the source file, it’s important to do the following steps:

	Open bitcoin_en.ts in Qt Linguist (included in the Qt SDK)

	Search for %n, which will take you to the parts in the translation that use plurals

	Look for empty English Translation (Singular) and English Translation (Plural) fields

	Add the appropriate strings for the singular and plural form of the base string

	Mark the item as done (via the green arrow symbol in the toolbar)

	Repeat from step 2, until all singular and plural forms are in the source file

	Save the source file

Translating a new language

To create a new language template, you will need to edit the languages manifest file src/qt/bitcoin.qrc and add a new entry. Below is an example of the english language entry.

<qresource prefix="/translations">
 <file alias="en">locale/bitcoin_en.qm</file>
 ...
</qresource>

Note: that the language translation file must end in .qm (the compiled extension), and not .ts.

Questions and general assistance

The Bitcoin-Core translation maintainers include tcatm, seone, Diapolo, wumpus and luke-jr. You can find them, and others, in the Freenode IRC chatroom - irc.freenode.net #bitcoin-core-dev.

If you are a translator, you should also subscribe to the mailing list, https://groups.google.com/forum/#!forum/bitcoin-translators. Announcements will be posted during application pre-releases to notify translators to check for updates.

 Translation Strings Policy

Translation Strings Policy

This document provides guidelines for internationalization of the Bitcoin Core software.

How to translate?

To mark a message as translatable

	In GUI source code (under src/qt): use tr("...")

	In non-GUI source code (under src): use _("...")

No internationalization is used for e.g. developer scripts outside src.

Strings to be translated

On a high level, these strings are to be translated:

	GUI strings, anything that appears in a dialog or window

	Command-line option documentation

GUI strings

Anything that appears to the user in the GUI is to be translated. This includes labels, menu items, button texts, tooltips and window titles.
This includes messages passed to the GUI through the UI interface through InitMessage, ThreadSafeMessageBox or ShowProgress.

Command-line options

Documentation for the command line options in the output of --help should be translated as well.

Make sure that default values do not end up in the string, but use string formatting like strprintf(_("Threshold for disconnecting misbehaving peers (default: %u)"), 100). Putting default values in strings has led to accidental translations in the past, and forces the string to be retranslated every time the value changes.

Do not translate messages that are only shown to developers, such as those that only appear when --help-debug is used.

General recommendations

Avoid unnecessary translation strings

Try not to burden translators with translating messages that are e.g. slight variations of other messages.
In the GUI, avoid the use of text where an icon or symbol will do.
Make sure that placeholder texts in forms don’t end up in the list of strings to be translated (use <string notr="true">).

Make translated strings understandable

Try to write translation strings in an understandable way, for both the user and the translator. Avoid overly technical or detailed messages

Do not translate internal errors

Do not translate internal errors, or log messages, or messages that appear on the RPC interface. If an error is to be shown to the user,
use a translatable generic message, then log the detailed message to the log. E.g. “A fatal internal error occurred, see debug.log for details”.
This helps troubleshooting; if the error is the same for everyone, the likelihood is increased that it can be found using a search engine.

Avoid fragments

Avoid dividing up a message into fragments. Translators see every string separately, so may misunderstand the context if the messages are not self-contained.

Avoid HTML in translation strings

There have been difficulties with use of HTML in translation strings; translators should not be able to accidentally affect the formatting of messages.
This may sometimes be at conflict with the recommendation in the previous section.

Plurals

Plurals can be complex in some languages. A quote from the gettext documentation:

In Polish we use e.g. plik (file) this way:
1 plik,
2,3,4 pliki,
5-21 pliko'w,
22-24 pliki,
25-31 pliko'w
and so on

In Qt code use tr’s third argument for optional plurality. For example:

tr("%n hour(s)","",secs/HOUR_IN_SECONDS);
tr("%n day(s)","",secs/DAY_IN_SECONDS);
tr("%n week(s)","",secs/WEEK_IN_SECONDS);

This adds <numerusform>s to the respective .ts file, which can be translated separately depending on the language. In English, this is simply:

<message numerus="yes">
 <source>%n active connection(s) to Bitcoin network</source>
 <translation>
 <numerusform>%n active connection to Bitcoin network</numerusform>
 <numerusform>%n active connections to Bitcoin network</numerusform>
 </translation>
</message>

Where it is possible try to avoid embedding numbers into the flow of the string at all. e.g.

WARNING: check your network connection, %d blocks received in the last %d hours (%d expected)

versus

WARNING: check your network connection, less blocks (%d) were received in the last %n hours than expected (%d).

The second example reduces the number of pluralized words that translators have to handle from three to one, at no cost to comprehensibility of the sentence.

String freezes

During a string freeze (often before a major release), no translation strings are to be added, modified or removed.

This can be checked by executing make translate in the src directory, then verifying that bitcoin_en.ts remains unchanged.

 Compiling/running unit tests

Compiling/running unit tests

Unit tests will be automatically compiled if dependencies were met in ./configure
and tests weren’t explicitly disabled.

After configuring, they can be run with make check.

To run the bitcoind tests manually, launch src/test/test_bitcoin.

To add more bitcoind tests, add BOOST_AUTO_TEST_CASE functions to the existing
.cpp files in the test/ directory or add new .cpp files that
implement new BOOST_AUTO_TEST_SUITE sections.

To run the bitcoin-qt tests manually, launch src/qt/test/test_bitcoin-qt

To add more bitcoin-qt tests, add them to the src/qt/test/ directory and
the src/qt/test/test_main.cpp file.

 Block and Transaction Broadcasting With ZeroMQ

Block and Transaction Broadcasting With ZeroMQ

ZeroMQ [http://zeromq.org/] is a lightweight wrapper around TCP
connections, inter-process communication, and shared-memory,
providing various message-oriented semantics such as publish/subscribe,
request/reply, and push/pull.

The Bitcoin Core daemon can be configured to act as a trusted “border
router”, implementing the bitcoin wire protocol and relay, making
consensus decisions, maintaining the local blockchain database,
broadcasting locally generated transactions into the network, and
providing a queryable RPC interface to interact on a polled basis for
requesting blockchain related data. However, there exists only a
limited service to notify external software of events like the arrival
of new blocks or transactions.

The ZeroMQ facility implements a notification interface through a set
of specific notifiers. Currently there are notifiers that publish
blocks and transactions. This read-only facility requires only the
connection of a corresponding ZeroMQ subscriber port in receiving
software; it is not authenticated nor is there any two-way protocol
involvement. Therefore, subscribers should validate the received data
since it may be out of date, incomplete or even invalid.

ZeroMQ sockets are self-connecting and self-healing; that is,
connections made between two endpoints will be automatically restored
after an outage, and either end may be freely started or stopped in
any order.

Because ZeroMQ is message oriented, subscribers receive transactions
and blocks all-at-once and do not need to implement any sort of
buffering or reassembly.

Prerequisites

The ZeroMQ feature in Bitcoin Core requires ZeroMQ API version 4.x or
newer. Typically, it is packaged by distributions as something like
libzmq3-dev. The C++ wrapper for ZeroMQ is not needed.

In order to run the example Python client scripts in contrib/ one must
also install python-zmq, though this is not necessary for daemon
operation.

Enabling

By default, the ZeroMQ feature is automatically compiled in if the
necessary prerequisites are found. To disable, use –disable-zmq
during the configure step of building bitcoind:

$./configure --disable-zmq (other options)

To actually enable operation, one must set the appropriate options on
the commandline or in the configuration file.

Usage

Currently, the following notifications are supported:

-zmqpubhashtx=address
-zmqpubhashblock=address
-zmqpubrawblock=address
-zmqpubrawtx=address

The socket type is PUB and the address must be a valid ZeroMQ socket
address. The same address can be used in more than one notification.

For instance:

$ bitcoind -zmqpubhashtx=tcp://127.0.0.1:28332 \
 -zmqpubrawtx=ipc:///tmp/bitcoind.tx.raw

Each PUB notification has a topic and body, where the header
corresponds to the notification type. For instance, for the
notification -zmqpubhashtx the topic is hashtx (no null
terminator) and the body is the hexadecimal transaction hash (32
bytes).

These options can also be provided in bitcoin.conf.

ZeroMQ endpoint specifiers for TCP (and others) are documented in the
ZeroMQ API [http://api.zeromq.org/4-0:_start].

Client side, then, the ZeroMQ subscriber socket must have the
ZMQ_SUBSCRIBE option set to one or either of these prefixes (for
instance, just hash); without doing so will result in no messages
arriving. Please see contrib/zmq/zmq_sub.py for a working example.

Remarks

From the perspective of bitcoind, the ZeroMQ socket is write-only; PUB
sockets don’t even have a read function. Thus, there is no state
introduced into bitcoind directly. Furthermore, no information is
broadcast that wasn’t already received from the public P2P network.

No authentication or authorization is done on connecting clients; it
is assumed that the ZeroMQ port is exposed only to trusted entities,
using other means such as firewalling.

Note that when the block chain tip changes, a reorganisation may occur
and just the tip will be notified. It is up to the subscriber to
retrieve the chain from the last known block to the new tip.

 Upgrading and downgrading

 Bitcoin Core version 0.10.0 is now available from:

https://bitcoin.org/bin/0.10.0/

This is a new major version release, bringing both new features and
bug fixes.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

Upgrading and downgrading

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

Downgrading warning

Because release 0.10.0 makes use of headers-first synchronization and parallel
block download (see further), the block files and databases are not
backwards-compatible with older versions of Bitcoin Core or other software:

	Blocks will be stored on disk out of order (in the order they are
received, really), which makes it incompatible with some tools or
other programs. Reindexing using earlier versions will also not work
anymore as a result of this.

	The block index database will now hold headers for which no block is
stored on disk, which earlier versions won’t support.

If you want to be able to downgrade smoothly, make a backup of your entire data
directory. Without this your node will need start syncing (or importing from
bootstrap.dat) anew afterwards. It is possible that the data from a completely
synchronised 0.10 node may be usable in older versions as-is, but this is not
supported and may break as soon as the older version attempts to reindex.

This does not affect wallet forward or backward compatibility.

Notable changes

Faster synchronization

Bitcoin Core now uses ‘headers-first synchronization’. This means that we first
ask peers for block headers (a total of 27 megabytes, as of December 2014) and
validate those. In a second stage, when the headers have been discovered, we
download the blocks. However, as we already know about the whole chain in
advance, the blocks can be downloaded in parallel from all available peers.

In practice, this means a much faster and more robust synchronization. On
recent hardware with a decent network link, it can be as little as 3 hours
for an initial full synchronization. You may notice a slower progress in the
very first few minutes, when headers are still being fetched and verified, but
it should gain speed afterwards.

A few RPCs were added/updated as a result of this:

	getblockchaininfo now returns the number of validated headers in addition to
the number of validated blocks.

	getpeerinfo lists both the number of blocks and headers we know we have in
common with each peer. While synchronizing, the heights of the blocks that we
have requested from peers (but haven’t received yet) are also listed as
‘inflight’.

	A new RPC getchaintips lists all known branches of the block chain,
including those we only have headers for.

Transaction fee changes

This release automatically estimates how high a transaction fee (or how
high a priority) transactions require to be confirmed quickly. The default
settings will create transactions that confirm quickly; see the new
‘txconfirmtarget’ setting to control the tradeoff between fees and
confirmation times. Fees are added by default unless the ‘sendfreetransactions’
setting is enabled.

Prior releases used hard-coded fees (and priorities), and would
sometimes create transactions that took a very long time to confirm.

Statistics used to estimate fees and priorities are saved in the
data directory in the fee_estimates.dat file just before
program shutdown, and are read in at startup.

New command line options for transaction fee changes:

	-txconfirmtarget=n : create transactions that have enough fees (or priority)
so they are likely to begin confirmation within n blocks (default: 1). This setting
is over-ridden by the -paytxfee option.

	-sendfreetransactions : Send transactions as zero-fee transactions if possible
(default: 0)

New RPC commands for fee estimation:

	estimatefee nblocks : Returns approximate fee-per-1,000-bytes needed for
a transaction to begin confirmation within nblocks. Returns -1 if not enough
transactions have been observed to compute a good estimate.

	estimatepriority nblocks : Returns approximate priority needed for
a zero-fee transaction to begin confirmation within nblocks. Returns -1 if not
enough free transactions have been observed to compute a good
estimate.

RPC access control changes

Subnet matching for the purpose of access control is now done
by matching the binary network address, instead of with string wildcard matching.
For the user this means that -rpcallowip takes a subnet specification, which can be

	a single IP address (e.g. 1.2.3.4 or fe80::0012:3456:789a:bcde)

	a network/CIDR (e.g. 1.2.3.0/24 or fe80::0000/64)

	a network/netmask (e.g. 1.2.3.4/255.255.255.0 or fe80::0012:3456:789a:bcde/ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff)

An arbitrary number of -rpcallow arguments can be given. An incoming connection will be accepted if its origin address
matches one of them.

For example:

0.9.x and before	0.10.x
——————————————–	—————————————
-rpcallowip=192.168.1.1	-rpcallowip=192.168.1.1 (unchanged)
-rpcallowip=192.168.1.*	-rpcallowip=192.168.1.0/24
-rpcallowip=192.168.*	-rpcallowip=192.168.0.0/16
-rpcallowip=* (dangerous!)	-rpcallowip=::/0 (still dangerous!)

Using wildcards will result in the rule being rejected with the following error in debug.log:

Error: Invalid -rpcallowip subnet specification: *. Valid are a single IP (e.g. 1.2.3.4), a network/netmask (e.g. 1.2.3.4/255.255.255.0) or a network/CIDR (e.g. 1.2.3.4/24).

REST interface

A new HTTP API is exposed when running with the -rest flag, which allows
unauthenticated access to public node data.

It is served on the same port as RPC, but does not need a password, and uses
plain HTTP instead of JSON-RPC.

Assuming a local RPC server running on port 8332, it is possible to request:

	Blocks: http://localhost:8332/rest/block/HASH.EXT

	Blocks without transactions: http://localhost:8332/rest/block/notxdetails/HASH.EXT

	Transactions (requires -txindex): http://localhost:8332/rest/tx/HASH.EXT

In every case, EXT can be bin (for raw binary data), hex (for hex-encoded
binary) or json.

For more details, see the doc/REST-interface.md document in the repository.

RPC Server “Warm-Up” Mode

The RPC server is started earlier now, before most of the expensive
intialisations like loading the block index. It is available now almost
immediately after starting the process. However, until all initialisations
are done, it always returns an immediate error with code -28 to all calls.

This new behaviour can be useful for clients to know that a server is already
started and will be available soon (for instance, so that they do not
have to start it themselves).

Improved signing security

For 0.10 the security of signing against unusual attacks has been
improved by making the signatures constant time and deterministic.

This change is a result of switching signing to use libsecp256k1
instead of OpenSSL. Libsecp256k1 is a cryptographic library
optimized for the curve Bitcoin uses which was created by Bitcoin
Core developer Pieter Wuille.

There exist attacks[1] against most ECC implementations where an
attacker on shared virtual machine hardware could extract a private
key if they could cause a target to sign using the same key hundreds
of times. While using shared hosts and reusing keys are inadvisable
for other reasons, it’s a better practice to avoid the exposure.

OpenSSL has code in their source repository for derandomization
and reduction in timing leaks that we’ve eagerly wanted to use for a
long time, but this functionality has still not made its
way into a released version of OpenSSL. Libsecp256k1 achieves
significantly stronger protection: As far as we’re aware this is
the only deployed implementation of constant time signing for
the curve Bitcoin uses and we have reason to believe that
libsecp256k1 is better tested and more thoroughly reviewed
than the implementation in OpenSSL.

[1] https://eprint.iacr.org/2014/161.pdf

Watch-only wallet support

The wallet can now track transactions to and from wallets for which you know
all addresses (or scripts), even without the private keys.

This can be used to track payments without needing the private keys online on a
possibly vulnerable system. In addition, it can help for (manual) construction
of multisig transactions where you are only one of the signers.

One new RPC, importaddress, is added which functions similarly to
importprivkey, but instead takes an address or script (in hexadecimal) as
argument. After using it, outputs credited to this address or script are
considered to be received, and transactions consuming these outputs will be
considered to be sent.

The following RPCs have optional support for watch-only:
getbalance, listreceivedbyaddress, listreceivedbyaccount,
listtransactions, listaccounts, listsinceblock, gettransaction. See the
RPC documentation for those methods for more information.

Compared to using getrawtransaction, this mechanism does not require
-txindex, scales better, integrates better with the wallet, and is compatible
with future block chain pruning functionality. It does mean that all relevant
addresses need to added to the wallet before the payment, though.

Consensus library

Starting from 0.10.0, the Bitcoin Core distribution includes a consensus library.

The purpose of this library is to make the verification functionality that is
critical to Bitcoin’s consensus available to other applications, e.g. to language
bindings such as python-bitcoinlib [https://pypi.python.org/pypi/python-bitcoinlib] or
alternative node implementations.

This library is called libbitcoinconsensus.so (or, .dll for Windows).
Its interface is defined in the C header bitcoinconsensus.h [https://github.com/bitcoin/bitcoin/blob/0.10/src/script/bitcoinconsensus.h].

In its initial version the API includes two functions:

	bitcoinconsensus_verify_script verifies a script. It returns whether the indicated input of the provided serialized transaction
correctly spends the passed scriptPubKey under additional constraints indicated by flags

	bitcoinconsensus_version returns the API version, currently at an experimental 0

The functionality is planned to be extended to e.g. UTXO management in upcoming releases, but the interface
for existing methods should remain stable.

Standard script rules relaxed for P2SH addresses

The IsStandard() rules have been almost completely removed for P2SH
redemption scripts, allowing applications to make use of any valid
script type, such as “n-of-m OR y”, hash-locked oracle addresses, etc.
While the Bitcoin protocol has always supported these types of script,
actually using them on mainnet has been previously inconvenient as
standard Bitcoin Core nodes wouldn’t relay them to miners, nor would
most miners include them in blocks they mined.

bitcoin-tx

It has been observed that many of the RPC functions offered by bitcoind are
“pure functions”, and operate independently of the bitcoind wallet. This
included many of the RPC “raw transaction” API functions, such as
createrawtransaction.

bitcoin-tx is a newly introduced command line utility designed to enable easy
manipulation of bitcoin transactions. A summary of its operation may be
obtained via “bitcoin-tx –help” Transactions may be created or signed in a
manner similar to the RPC raw tx API. Transactions may be updated, deleting
inputs or outputs, or appending new inputs and outputs. Custom scripts may be
easily composed using a simple text notation, borrowed from the bitcoin test
suite.

This tool may be used for experimenting with new transaction types, signing
multi-party transactions, and many other uses. Long term, the goal is to
deprecate and remove “pure function” RPC API calls, as those do not require a
server round-trip to execute.

Other utilities “bitcoin-key” and “bitcoin-script” have been proposed, making
key and script operations easily accessible via command line.

Mining and relay policy enhancements

Bitcoin Core’s block templates are now for version 3 blocks only, and any mining
software relying on its getblocktemplate must be updated in parallel to use
libblkmaker either version 0.4.2 or any version from 0.5.1 onward.
If you are solo mining, this will affect you the moment you upgrade Bitcoin
Core, which must be done prior to BIP66 achieving its 951/1001 status.
If you are mining with the stratum mining protocol: this does not affect you.
If you are mining with the getblocktemplate protocol to a pool: this will affect
you at the pool operator’s discretion, which must be no later than BIP66
achieving its 951/1001 status.

The prioritisetransaction RPC method has been added to enable miners to
manipulate the priority of transactions on an individual basis.

Bitcoin Core now supports BIP 22 long polling, so mining software can be
notified immediately of new templates rather than having to poll periodically.

Support for BIP 23 block proposals is now available in Bitcoin Core’s
getblocktemplate method. This enables miners to check the basic validity of
their next block before expending work on it, reducing risks of accidental
hardforks or mining invalid blocks.

Two new options to control mining policy:

	-datacarrier=0/1 : Relay and mine “data carrier” (OP_RETURN) transactions
if this is 1.

	-datacarriersize=n : Maximum size, in bytes, we consider acceptable for
“data carrier” outputs.

The relay policy has changed to more properly implement the desired behavior of not
relaying free (or very low fee) transactions unless they have a priority above the
AllowFreeThreshold(), in which case they are relayed subject to the rate limiter.

BIP 66: strict DER encoding for signatures

Bitcoin Core 0.10 implements BIP 66, which introduces block version 3, and a new
consensus rule, which prohibits non-DER signatures. Such transactions have been
non-standard since Bitcoin v0.8.0 (released in February 2013), but were
technically still permitted inside blocks.

This change breaks the dependency on OpenSSL’s signature parsing, and is
required if implementations would want to remove all of OpenSSL from the
consensus code.

The same miner-voting mechanism as in BIP 34 is used: when 751 out of a
sequence of 1001 blocks have version number 3 or higher, the new consensus
rule becomes active for those blocks. When 951 out of a sequence of 1001
blocks have version number 3 or higher, it becomes mandatory for all blocks.

Backward compatibility with current mining software is NOT provided, thus miners
should read the first paragraph of “Mining and relay policy enhancements” above.

0.10.0 Change log

Detailed release notes follow. This overview includes changes that affect external
behavior, not code moves, refactors or string updates.

RPC:

	f923c07 Support IPv6 lookup in bitcoin-cli even when IPv6 only bound on localhost

	b641c9c Fix addnode “onetry”: Connect with OpenNetworkConnection

	171ca77 estimatefee / estimatepriority RPC methods

	b750cf1 Remove cli functionality from bitcoind

	f6984e8 Add “chain” to getmininginfo, improve help in getblockchaininfo

	99ddc6c Add nLocalServices info to RPC getinfo

	cf0c47b Remove getwork() RPC call

	2a72d45 prioritisetransaction

 Upgrading and downgrading

 Bitcoin Core version 0.10.1 is now available from:

https://bitcoin.org/bin/bitcoin-core-0.10.1/

This is a new minor version release, bringing bug fixes and translation
updates. It is recommended to upgrade to this version.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

Upgrading and downgrading

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

Downgrade warning

Because release 0.10.0 and later makes use of headers-first synchronization and
parallel block download (see further), the block files and databases are not
backwards-compatible with pre-0.10 versions of Bitcoin Core or other software:

	Blocks will be stored on disk out of order (in the order they are
received, really), which makes it incompatible with some tools or
other programs. Reindexing using earlier versions will also not work
anymore as a result of this.

	The block index database will now hold headers for which no block is
stored on disk, which earlier versions won’t support.

If you want to be able to downgrade smoothly, make a backup of your entire data
directory. Without this your node will need start syncing (or importing from
bootstrap.dat) anew afterwards. It is possible that the data from a completely
synchronised 0.10 node may be usable in older versions as-is, but this is not
supported and may break as soon as the older version attempts to reindex.

This does not affect wallet forward or backward compatibility.

Notable changes

This is a minor release and hence there are no notable changes.
For the notable changes in 0.10, refer to the release notes for the
0.10.0 release at https://github.com/bitcoin/bitcoin/blob/v0.10.0/doc/release-notes.md

0.10.1 Change log

Detailed release notes follow. This overview includes changes that affect external
behavior, not code moves, refactors or string updates.

RPC:

	7f502be fix crash: createmultisig and addmultisigaddress

	eae305f Fix missing lock in submitblock

Block (database) and transaction handling:

	1d2cdd2 Fix InvalidateBlock to add chainActive.Tip to setBlockIndexCandidates

	c91c660 fix InvalidateBlock to repopulate setBlockIndexCandidates

	002c8a2 fix possible block db breakage during re-index

	a1f425b Add (optional) consistency check for the block chain data structures

	1c62e84 Keep mempool consistent during block-reorgs

	57d1f46 Fix CheckBlockIndex for reindex

	bac6fca Set nSequenceId when a block is fully linked

P2P protocol and network code:

	78f64ef don’t trickle for whitelisted nodes

	ca301bf Reduce fingerprinting through timestamps in ‘addr’ messages.

	200f293 Ignore getaddr messages on Outbound connections.

	d5d8998 Limit message sizes before transfer

	aeb9279 Better fingerprinting protection for non-main-chain getdatas.

	cf0218f Make addrman’s bucket placement deterministic (countermeasure 1 against eclipse attacks, see http://cs-people.bu.edu/heilman/eclipse/)

	0c6f334 Always use a 50% chance to choose between tried and new entries (countermeasure 2 against eclipse attacks)

	214154e Do not bias outgoing connections towards fresh addresses (countermeasure 2 against eclipse attacks)

	aa587d4 Scale up addrman (countermeasure 6 against eclipse attacks)

	139cd81 Cap nAttempts penalty at 8 and switch to pow instead of a division loop

Validation:

	d148f62 Acquire CCheckQueue’s lock to avoid race condition

Build system:

	8752b5c 0.10 fix for crashes on OSX 10.6

Wallet:

	N/A

GUI:

	2c08406 some mac specifiy cleanup (memory handling, unnecessary code)

	81145a6 fix OSX dock icon window reopening

	786cf72 fix a issue where “command line options”-action overwrite “Preference”-action (on OSX)

Tests:

	1117378 add RPC test for InvalidateBlock

Miscellaneous:

	c9e022b Initialization: set Boost path locale in main thread

	23126a0 Sanitize command strings before logging them.

	323de27 Initialization: setup environment before starting Qt tests

	7494e09 Initialization: setup environment before starting tests

	df45564 Initialization: set fallback locale as environment variable

Credits

Thanks to everyone who directly contributed to this release:

	Alex Morcos

	Cory Fields

	dexX7

	fsb4000

	Gavin Andresen

	Gregory Maxwell

	Ivan Pustogarov

	Jonas Schnelli

	Matt Corallo

	mrbandrews

	Pieter Wuille

	Ruben de Vries

	Suhas Daftuar

	Wladimir J. van der Laan

And all those who contributed additional code review and/or security research:

	21E14

	Alison Kendler

	Aviv Zohar

	Ethan Heilman

	Evil-Knievel

	fanquake

	Jeff Garzik

	Jonas Nick

	Luke Dashjr

	Patrick Strateman

	Philip Kaufmann

	Sergio Demian Lerner

	Sharon Goldberg

As well as everyone that helped translating on Transifex [https://www.transifex.com/projects/p/bitcoin/].

 Upgrading and downgrading

 Bitcoin Core version 0.10.2 is now available from:

https://bitcoin.org/bin/bitcoin-core-0.10.2/

This is a new minor version release, bringing minor bug fixes and translation
updates. It is recommended to upgrade to this version.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

Upgrading and downgrading

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

Downgrade warning

Because release 0.10.0 and later makes use of headers-first synchronization and
parallel block download (see further), the block files and databases are not
backwards-compatible with pre-0.10 versions of Bitcoin Core or other software:

	Blocks will be stored on disk out of order (in the order they are
received, really), which makes it incompatible with some tools or
other programs. Reindexing using earlier versions will also not work
anymore as a result of this.

	The block index database will now hold headers for which no block is
stored on disk, which earlier versions won’t support.

If you want to be able to downgrade smoothly, make a backup of your entire data
directory. Without this your node will need start syncing (or importing from
bootstrap.dat) anew afterwards. It is possible that the data from a completely
synchronised 0.10 node may be usable in older versions as-is, but this is not
supported and may break as soon as the older version attempts to reindex.

This does not affect wallet forward or backward compatibility.

Notable changes

This fixes a serious problem on Windows with data directories that have non-ASCII
characters (https://github.com/bitcoin/bitcoin/issues/6078).

For other platforms there are no notable changes.

For the notable changes in 0.10, refer to the release notes
at https://github.com/bitcoin/bitcoin/blob/v0.10.0/doc/release-notes.md

0.10.2 Change log

Detailed release notes follow. This overview includes changes that affect external
behavior, not code moves, refactors or string updates.

Wallet:

	824c011 fix boost::get usage with boost 1.58

Miscellaneous:

	da65606 Avoid crash on start in TestBlockValidity with gen=1.

	424ae66 don’t imbue boost::filesystem::path with locale “C” on windows (fixes #6078)

Credits

Thanks to everyone who directly contributed to this release:

	Cory Fields

	Gregory Maxwell

	Jonas Schnelli

	Wladimir J. van der Laan

And all those who contributed additional code review and/or security research:

	dexX7

	Pieter Wuille

	vayvanne

As well as everyone that helped translating on Transifex [https://www.transifex.com/projects/p/bitcoin/].

 Upgrading and downgrading

 Bitcoin Core version 0.10.3 is now available from:

https://bitcoin.org/bin/bitcoin-core-0.10.3/

This is a new minor version release, bringing security fixes and translation
updates. It is recommended to upgrade to this version as soon as possible.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

Upgrading and downgrading

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

Downgrade warning

Because release 0.10.0 and later makes use of headers-first synchronization and
parallel block download (see further), the block files and databases are not
backwards-compatible with pre-0.10 versions of Bitcoin Core or other software:

	Blocks will be stored on disk out of order (in the order they are
received, really), which makes it incompatible with some tools or
other programs. Reindexing using earlier versions will also not work
anymore as a result of this.

	The block index database will now hold headers for which no block is
stored on disk, which earlier versions won’t support.

If you want to be able to downgrade smoothly, make a backup of your entire data
directory. Without this your node will need start syncing (or importing from
bootstrap.dat) anew afterwards. It is possible that the data from a completely
synchronised 0.10 node may be usable in older versions as-is, but this is not
supported and may break as soon as the older version attempts to reindex.

This does not affect wallet forward or backward compatibility.

Notable changes

Fix buffer overflow in bundled upnp

Bundled miniupnpc was updated to 1.9.20151008. This fixes a buffer overflow in
the XML parser during initial network discovery.

Details can be found here: http://talosintel.com/reports/TALOS-2015-0035/

This applies to the distributed executables only, not when building from source or
using distribution provided packages.

Additionally, upnp has been disabled by default. This may result in a lower
number of reachable nodes on IPv4, however this prevents future libupnpc
vulnerabilities from being a structural risk to the network
(see https://github.com/bitcoin/bitcoin/pull/6795).

Test for LowS signatures before relaying

Make the node require the canonical ‘low-s’ encoding for ECDSA signatures when
relaying or mining. This removes a nuisance malleability vector.

Consensus behavior is unchanged.

If widely deployed this change would eliminate the last remaining known vector
for nuisance malleability on SIGHASH_ALL P2PKH transactions. On the down-side
it will block most transactions made by sufficiently out of date software.

Unlike the other avenues to change txids on transactions this
one was randomly violated by all deployed bitcoin software prior to
its discovery. So, while other malleability vectors where made
non-standard as soon as they were discovered, this one has remained
permitted. Even BIP62 did not propose applying this rule to
old version transactions, but conforming implementations have become
much more common since BIP62 was initially written.

Bitcoin Core has produced compatible signatures since a28fb70e in
September 2013, but this didn’t make it into a release until 0.9
in March 2014; Bitcoinj has done so for a similar span of time.
Bitcoinjs and electrum have been more recently updated.

This does not replace the need for BIP62 or similar, as miners can
still cooperate to break transactions. Nor does it replace the
need for wallet software to handle malleability sanely[1]. This
only eliminates the cheap and irritating DOS attack.

[1] On the Malleability of Bitcoin Transactions
Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, Łukasz Mazurek
http://fc15.ifca.ai/preproceedings/bitcoin/paper_9.pdf

Minimum relay fee default increase

The default for the -minrelaytxfee setting has been increased from 0.00001
to 0.00005.

This is necessitated by the current transaction flooding, causing
outrageous memory usage on nodes due to the mempool ballooning. This is a
temporary measure, bridging the time until a dynamic method for determining
this fee is merged (which will be in 0.12).

(see https://github.com/bitcoin/bitcoin/pull/6793, as well as the 0.11.0
release notes, in which this value was suggested)

0.10.3 Change log

Detailed release notes follow. This overview includes changes that affect external
behavior, not code moves, refactors or string updates.

	#6186 e4a7d51 Fix two problems in CSubnet parsing

	#6153 ebd7d8d Parameter interaction: disable upnp if -proxy set

	#6203 ecc96f5 Remove P2SH coinbase flag, no longer interesting

	#6226 181771b json: fail read_string if string contains trailing garbage

	#6244 09334e0 configure: Detect (and reject) LibreSSL

	#6276 0fd8464 Fix getbalance * 0

	#6274 be64204 Add option -alerts to opt out of alert system

	#6319 3f55638 doc: update mailing list address

	#6438 7e66e9c openssl: avoid config file load/race

	#6439 255eced Updated URL location of netinstall for Debian

	#6412 0739e6e Test whether created sockets are select()able

	#6694 f696ea1 [QT] fix thin space word wrap line brake issue

	#6704 743cc9e Backport bugfixes to 0.10

	#6769 1cea6b0 Test LowS in standardness, removes nuisance malleability vector.

	#6789 093d7b5 Update miniupnpc to 1.9.20151008

	#6795 f2778e0 net: Disable upnp by default

	#6797 91ef4d9 Do not store more than 200 timedata samples

	#6793 842c48d Bump minrelaytxfee default

Credits

Thanks to everyone who directly contributed to this release:

	Adam Weiss

	Alex Morcos

	Casey Rodarmor

	Cory Fields

	fanquake

	Gregory Maxwell

	Jonas Schnelli

	J Ross Nicoll

	Luke Dashjr

	Pavel Vasin

	Pieter Wuille

	randy-waterhouse

	฿tcDrak

	Tom Harding

	Veres Lajos

	Wladimir J. van der Laan

And all those who contributed additional code review and/or security research:

	timothy on IRC for reporting the issue

	Vulnerability in miniupnp discovered by Aleksandar Nikolic of Cisco Talos

As well as everyone that helped translating on Transifex [https://www.transifex.com/projects/p/bitcoin/].

 Upgrading and downgrading

 Bitcoin Core version 0.10.4 is now available from:

https://bitcoin.org/bin/bitcoin-core-0.10.4/

This is a new minor version release, bringing bug fixes, the BIP65
(CLTV) consensus change, and relay policy preparation for BIP113. It is
recommended to upgrade to this version as soon as possible.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

Upgrading and downgrading

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

Downgrade warning

Because release 0.10.0 and later makes use of headers-first synchronization and
parallel block download (see further), the block files and databases are not
backwards-compatible with pre-0.10 versions of Bitcoin Core or other software:

	Blocks will be stored on disk out of order (in the order they are
received, really), which makes it incompatible with some tools or
other programs. Reindexing using earlier versions will also not work
anymore as a result of this.

	The block index database will now hold headers for which no block is
stored on disk, which earlier versions won’t support.

If you want to be able to downgrade smoothly, make a backup of your entire data
directory. Without this your node will need start syncing (or importing from
bootstrap.dat) anew afterwards. It is possible that the data from a completely
synchronised 0.10 node may be usable in older versions as-is, but this is not
supported and may break as soon as the older version attempts to reindex.

This does not affect wallet forward or backward compatibility. There are no
known problems when downgrading from 0.11.x to 0.10.x.

Notable changes since 0.10.3

BIP65 soft fork to enforce OP_CHECKLOCKTIMEVERIFY opcode

This release includes several changes related to the BIP65 [https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki] soft fork
which redefines the existing OP_NOP2 opcode as OP_CHECKLOCKTIMEVERIFY
(CLTV) so that a transaction output can be made unspendable until a
specified point in the future.

	This release will only relay and mine transactions spending a CLTV
output if they comply with the BIP65 rules as provided in code.

	This release will produce version 4 blocks by default. Please see the
notice to miners below.

	Once 951 out of a sequence of 1,001 blocks on the local node’s best block
chain contain version 4 (or higher) blocks, this release will no
longer accept new version 3 blocks and it will only accept version 4
blocks if they comply with the BIP65 rules for CLTV.

For more information about the soft-forking change, please see
https://github.com/bitcoin/bitcoin/pull/6351

Graphs showing the progress towards block version 4 adoption may be
found at the URLs below:

	Block versions over the last 50,000 blocks as progress towards BIP65
consensus enforcement: http://bitcoin.sipa.be/ver-50k.png

	Block versions over the last 2,000 blocks showing the days to the
earliest possible BIP65 consensus-enforced block: http://bitcoin.sipa.be/ver-2k.png

Notice to miners: Bitcoin Core’s block templates are now for
version 4 blocks only, and any mining software relying on its
getblocktemplate must be updated in parallel to use libblkmaker either
version FIXME or any version from FIXME onward.

	If you are solo mining, this will affect you the moment you upgrade
Bitcoin Core, which must be done prior to BIP65 achieving its 951/1001
status.

	If you are mining with the stratum mining protocol: this does not
affect you.

	If you are mining with the getblocktemplate protocol to a pool: this
will affect you at the pool operator’s discretion, which must be no
later than BIP65 achieving its 951/1001 status.

Windows bug fix for corrupted UTXO database on unclean shutdowns

Several Windows users reported that they often need to reindex the
entire blockchain after an unclean shutdown of Bitcoin Core on Windows
(or an unclean shutdown of Windows itself). Although unclean shutdowns
remain unsafe, this release no longer relies on memory-mapped files for
the UTXO database, which significantly reduced the frequency of unclean
shutdowns leading to required reindexes during testing.

For more information, see: https://github.com/bitcoin/bitcoin/pull/6917

Other fixes for database corruption on Windows are expected in the
next major release.

0.10.4 Change log

Detailed release notes follow. This overview includes changes that affect
behavior, not code moves, refactors and string updates. For convenience in locating
the code changes and accompanying discussion, both the pull request and
git merge commit are mentioned.

	#6953 8b3311f alias -h for –help

	#6953 97546fc Change URLs to https in debian/control

	#6953 38671bf Update debian/changelog and slight tweak to debian/control

	#6953 256321e Correct spelling mistakes in doc folder

	#6953 eae0350 Clarification of unit test build instructions

	#6953 90897ab Update bluematt-key, the old one is long-since revoked

	#6953 a2f2fb6 build: disable -Wself-assign

	#6953 cf67d8b Bugfix: Allow mining on top of old tip blocks for testnet (fixes testnet-in-a-box use case)

	#6953 b3964e3 Drop “with minimal dependencies” from description

	#6953 43c2789 Split bitcoin-tx into its own package

	#6953 dfe0d4d Include bitcoin-tx binary on Debian/Ubuntu

	#6953 612efe8 [Qt] Raise debug window when requested

	#6953 3ad96bd Fix locking in GetTransaction

	#6953 9c81005 Fix spelling of Qt

	#6946 94b67e5 Update LevelDB

	#6706 5dc72f8 CLTV: Add more tests to improve coverage

	#6706 6a1343b Add RPC tests for the CHECKLOCKTIMEVERIFY (BIP65) soft-fork

	#6706 4137248 Add CHECKLOCKTIMEVERIFY (BIP65) soft-fork logic

	#6706 0e01d0f Enable CHECKLOCKTIMEVERIFY as a standard script verify flag

	#6706 6d01325 Replace NOP2 with CHECKLOCKTIMEVERIFY (BIP65)

	#6706 750d54f Move LOCKTIME_THRESHOLD to src/script/script.h

	#6706 6897468 Make CScriptNum() take nMaxNumSize as an argument

	#6867 5297194 Set TCP_NODELAY on P2P sockets

	#6836 fb818b6 Bring historical release notes up to date

	#6852 0b3fd07 build: make sure OpenSSL heeds noexecstack

Credits

Thanks to everyone who directly contributed to this release:

	Alex Morcos

	Daniel Cousens

	Diego Viola

	Eric Lombrozo

	Esteban Ordano

	Gregory Maxwell

	Luke Dashjr

	MarcoFalke

	Matt Corallo

	Micha

	Mitchell Cash

	Peter Todd

	Pieter Wuille

	Wladimir J. van der Laan

	Zak Wilcox

And those who contributed additional code review and/or security research.

As well as everyone that helped translating on Transifex [https://www.transifex.com/projects/p/bitcoin/].

 Upgrading and downgrading

 Bitcoin Core version 0.11.0 is now available from:

https://bitcoin.org/bin/bitcoin-core-0.11.0/

This is a new major version release, bringing both new features and
bug fixes.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

Upgrading and downgrading

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

Downgrade warning

Because release 0.10.0 and later makes use of headers-first synchronization and
parallel block download (see further), the block files and databases are not
backwards-compatible with pre-0.10 versions of Bitcoin Core or other software:

	Blocks will be stored on disk out of order (in the order they are
received, really), which makes it incompatible with some tools or
other programs. Reindexing using earlier versions will also not work
anymore as a result of this.

	The block index database will now hold headers for which no block is
stored on disk, which earlier versions won’t support.

If you want to be able to downgrade smoothly, make a backup of your entire data
directory. Without this your node will need start syncing (or importing from
bootstrap.dat) anew afterwards. It is possible that the data from a completely
synchronised 0.10 node may be usable in older versions as-is, but this is not
supported and may break as soon as the older version attempts to reindex.

This does not affect wallet forward or backward compatibility. There are no
known problems when downgrading from 0.11.x to 0.10.x.

Important information

Transaction flooding

At the time of this release, the P2P network is being flooded with low-fee
transactions. This causes a ballooning of the mempool size.

If this growth of the mempool causes problematic memory use on your node, it is
possible to change a few configuration options to work around this. The growth
of the mempool can be monitored with the RPC command getmempoolinfo.

One is to increase the minimum transaction relay fee minrelaytxfee, which
defaults to 0.00001. This will cause transactions with fewer BTC/kB fee to be
rejected, and thus fewer transactions entering the mempool.

The other is to restrict the relaying of free transactions with
limitfreerelay. This option sets the number of kB/minute at which
free transactions (with enough priority) will be accepted. It defaults to 15.
Reducing this number reduces the speed at which the mempool can grow due
to free transactions.

For example, add the following to bitcoin.conf:

minrelaytxfee=0.00005
limitfreerelay=5

More robust solutions are being worked on for a follow-up release.

Notable changes

Block file pruning

This release supports running a fully validating node without maintaining a copy
of the raw block and undo data on disk. To recap, there are four types of data
related to the blockchain in the bitcoin system: the raw blocks as received over
the network (blk???.dat), the undo data (rev???.dat), the block index and the
UTXO set (both LevelDB databases). The databases are built from the raw data.

Block pruning allows Bitcoin Core to delete the raw block and undo data once
it’s been validated and used to build the databases. At that point, the raw data
is used only to relay blocks to other nodes, to handle reorganizations, to look
up old transactions (if -txindex is enabled or via the RPC/REST interfaces), or
for rescanning the wallet. The block index continues to hold the metadata about
all blocks in the blockchain.

The user specifies how much space to allot for block & undo files. The minimum
allowed is 550MB. Note that this is in addition to whatever is required for the
block index and UTXO databases. The minimum was chosen so that Bitcoin Core will
be able to maintain at least 288 blocks on disk (two days worth of blocks at 10
minutes per block). In rare instances it is possible that the amount of space
used will exceed the pruning target in order to keep the required last 288
blocks on disk.

Block pruning works during initial sync in the same way as during steady state,
by deleting block files “as you go” whenever disk space is allocated. Thus, if
the user specifies 550MB, once that level is reached the program will begin
deleting the oldest block and undo files, while continuing to download the
blockchain.

For now, block pruning disables block relay. In the future, nodes with block
pruning will at a minimum relay “new” blocks, meaning blocks that extend their
active chain.

Block pruning is currently incompatible with running a wallet due to the fact
that block data is used for rescanning the wallet and importing keys or
addresses (which require a rescan.) However, running the wallet with block
pruning will be supported in the near future, subject to those limitations.

Block pruning is also incompatible with -txindex and will automatically disable
it.

Once you have pruned blocks, going back to unpruned state requires
re-downloading the entire blockchain. To do this, re-start the node with
-reindex. Note also that any problem that would cause a user to reindex (e.g.,
disk corruption) will cause a pruned node to redownload the entire blockchain.
Finally, note that when a pruned node reindexes, it will delete any blk???.dat
and rev???.dat files in the data directory prior to restarting the download.

To enable block pruning on the command line:

	-prune=N: where N is the number of MB to allot for raw block & undo data.

Modified RPC calls:

	getblockchaininfo now includes whether we are in pruned mode or not.

	getblock will check if the block’s data has been pruned and if so, return an
error.

	getrawtransaction will no longer be able to locate a transaction that has a
UTXO but where its block file has been pruned.

Pruning is disabled by default.

Big endian support

Experimental support for big-endian CPU architectures was added in this
release. All little-endian specific code was replaced with endian-neutral
constructs. This has been tested on at least MIPS and PPC hosts. The build
system will automatically detect the endianness of the target.

Memory usage optimization

There have been many changes in this release to reduce the default memory usage
of a node, among which:

	Accurate UTXO cache size accounting (#6102); this makes the option -dbcache
precise where this grossly underestimated memory usage before

	Reduce size of per-peer data structure (#6064 and others); this increases the
number of connections that can be supported with the same amount of memory

	Reduce the number of threads (#5964, #5679); lowers the amount of (esp.
virtual) memory needed

Fee estimation changes

This release improves the algorithm used for fee estimation. Previously, -1
was returned when there was insufficient data to give an estimate. Now, -1
will also be returned when there is no fee or priority high enough for the
desired confirmation target. In those cases, it can help to ask for an estimate
for a higher target number of blocks. It is not uncommon for there to be no
fee or priority high enough to be reliably (85%) included in the next block and
for this reason, the default for -txconfirmtarget=n has changed from 1 to 2.

Privacy: Disable wallet transaction broadcast

This release adds an option -walletbroadcast=0 to prevent automatic
transaction broadcast and rebroadcast (#5951). This option allows separating
transaction submission from the node functionality.

Making use of this, third-party scripts can be written to take care of
transaction (re)broadcast:

	Send the transaction as normal, either through RPC or the GUI

	Retrieve the transaction data through RPC using gettransaction (NOT
getrawtransaction). The hex field of the result will contain the raw
hexadecimal representation of the transaction

	The transaction can then be broadcasted through arbitrary mechanisms
supported by the script

One such application is selective Tor usage, where the node runs on the normal
internet but transactions are broadcasted over Tor.

For an example script see bitcoin-submittx [https://github.com/laanwj/bitcoin-submittx].

Privacy: Stream isolation for Tor

This release adds functionality to create a new circuit for every peer
connection, when the software is used with Tor. The new option,
-proxyrandomize, is on by default.

When enabled, every outgoing connection will (potentially) go through a
different exit node. That significantly reduces the chance to get unlucky and
pick a single exit node that is either malicious, or widely banned from the P2P
network. This improves connection reliability as well as privacy, especially
for the initial connections.

Important note: If a non-Tor SOCKS5 proxy is configured that supports
authentication, but doesn’t require it, this change may cause that proxy to reject
connections. A user and password is sent where they weren’t before. This setup
is exceedingly rare, but in this case -proxyrandomize=0 can be passed to
disable the behavior.

0.11.0 Change log

Detailed release notes follow. This overview includes changes that affect
behavior, not code moves, refactors and string updates. For convenience in locating
the code changes and accompanying discussion, both the pull request and
git merge commit are mentioned.

RPC and REST

	#5461 5f7279a signrawtransaction: validate private key

	#5444 103f66b Add /rest/headers//.

 Upgrading and downgrading

 Bitcoin Core version 0.11.1 is now available from:

https://bitcoin.org/bin/bitcoin-core-0.11.1/

This is a new minor version release, bringing security fixes. It is recommended
to upgrade to this version as soon as possible.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

Upgrading and downgrading

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

Downgrade warning

Because release 0.10.0 and later makes use of headers-first synchronization and
parallel block download (see further), the block files and databases are not
backwards-compatible with pre-0.10 versions of Bitcoin Core or other software:

	Blocks will be stored on disk out of order (in the order they are
received, really), which makes it incompatible with some tools or
other programs. Reindexing using earlier versions will also not work
anymore as a result of this.

	The block index database will now hold headers for which no block is
stored on disk, which earlier versions won’t support.

If you want to be able to downgrade smoothly, make a backup of your entire data
directory. Without this your node will need start syncing (or importing from
bootstrap.dat) anew afterwards. It is possible that the data from a completely
synchronised 0.10 node may be usable in older versions as-is, but this is not
supported and may break as soon as the older version attempts to reindex.

This does not affect wallet forward or backward compatibility. There are no
known problems when downgrading from 0.11.x to 0.10.x.

Notable changes

Fix buffer overflow in bundled upnp

Bundled miniupnpc was updated to 1.9.20151008. This fixes a buffer overflow in
the XML parser during initial network discovery.

Details can be found here: http://talosintel.com/reports/TALOS-2015-0035/

This applies to the distributed executables only, not when building from source or
using distribution provided packages.

Additionally, upnp has been disabled by default. This may result in a lower
number of reachable nodes on IPv4, however this prevents future libupnpc
vulnerabilities from being a structural risk to the network
(see https://github.com/bitcoin/bitcoin/pull/6795).

Test for LowS signatures before relaying

Make the node require the canonical ‘low-s’ encoding for ECDSA signatures when
relaying or mining. This removes a nuisance malleability vector.

Consensus behavior is unchanged.

If widely deployed this change would eliminate the last remaining known vector
for nuisance malleability on SIGHASH_ALL P2PKH transactions. On the down-side
it will block most transactions made by sufficiently out of date software.

Unlike the other avenues to change txids on transactions this
one was randomly violated by all deployed bitcoin software prior to
its discovery. So, while other malleability vectors where made
non-standard as soon as they were discovered, this one has remained
permitted. Even BIP62 did not propose applying this rule to
old version transactions, but conforming implementations have become
much more common since BIP62 was initially written.

Bitcoin Core has produced compatible signatures since a28fb70e in
September 2013, but this didn’t make it into a release until 0.9
in March 2014; Bitcoinj has done so for a similar span of time.
Bitcoinjs and electrum have been more recently updated.

This does not replace the need for BIP62 or similar, as miners can
still cooperate to break transactions. Nor does it replace the
need for wallet software to handle malleability sanely[1]. This
only eliminates the cheap and irritating DOS attack.

[1] On the Malleability of Bitcoin Transactions
Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, Łukasz Mazurek
http://fc15.ifca.ai/preproceedings/bitcoin/paper_9.pdf

Minimum relay fee default increase

The default for the -minrelaytxfee setting has been increased from 0.00001
to 0.00005.

This is necessitated by the current transaction flooding, causing
outrageous memory usage on nodes due to the mempool ballooning. This is a
temporary measure, bridging the time until a dynamic method for determining
this fee is merged (which will be in 0.12).

(see https://github.com/bitcoin/bitcoin/pull/6793, as well as the 0.11
release notes, in which this value was suggested)

0.11.1 Change log

Detailed release notes follow. This overview includes changes that affect
behavior, not code moves, refactors and string updates. For convenience in locating
the code changes and accompanying discussion, both the pull request and
git merge commit are mentioned.

	#6438 2531438 openssl: avoid config file load/race

	#6439 980f820 Updated URL location of netinstall for Debian

	#6384 8e5a969 qt: Force TLS1.0+ for SSL connections

	#6471 92401c2 Depends: bump to qt 5.5

	#6224 93b606a Be even stricter in processing unrequested blocks

	#6571 100ac4e libbitcoinconsensus: avoid a crash in multi-threaded environments

	#6545 649f5d9 Do not store more than 200 timedata samples.

	#6694 834e299 [QT] fix thin space word wrap line break issue

	#6703 1cd7952 Backport bugfixes to 0.11

	#6750 5ed8d0b Recent rejects backport to v0.11

	#6769 71cc9d9 Test LowS in standardness, removes nuisance malleability vector.

	#6789 b4ad73f Update miniupnpc to 1.9.20151008

	#6785 b4dc33e Backport to v0.11: In (strCommand == “tx”), return if AlreadyHave()

	#6412 0095b9a Test whether created sockets are select()able

	#6795 4dbcec0 net: Disable upnp by default

	#6793 e7bcc4a Bump minrelaytxfee default

Credits

Thanks to everyone who directly contributed to this release:

	Adam Weiss

	Alex Morcos

	Casey Rodarmor

	Cory Fields

	fanquake

	Gregory Maxwell

	Jonas Schnelli

	J Ross Nicoll

	Luke Dashjr

	Pavel Janík

	Pavel Vasin

	Peter Todd

	Pieter Wuille

	randy-waterhouse

	Ross Nicoll

	Suhas Daftuar

	tailsjoin

	฿tcDrak

	Tom Harding

	Veres Lajos

	Wladimir J. van der Laan

And those who contributed additional code review and/or security research:

	timothy on IRC for reporting the issue

	Vulnerability in miniupnp discovered by Aleksandar Nikolic of Cisco Talos

As well as everyone that helped translating on Transifex [https://www.transifex.com/projects/p/bitcoin/].

 Upgrading and downgrading

 Bitcoin Core version 0.11.2 is now available from:

https://bitcoin.org/bin/bitcoin-core-0.11.2/

This is a new minor version release, bringing bug fixes, the BIP65
(CLTV) consensus change, and relay policy preparation for BIP113. It is
recommended to upgrade to this version as soon as possible.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

Upgrading and downgrading

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

Downgrade warning

Because release 0.10.0 and later makes use of headers-first synchronization and
parallel block download (see further), the block files and databases are not
backwards-compatible with pre-0.10 versions of Bitcoin Core or other software:

	Blocks will be stored on disk out of order (in the order they are
received, really), which makes it incompatible with some tools or
other programs. Reindexing using earlier versions will also not work
anymore as a result of this.

	The block index database will now hold headers for which no block is
stored on disk, which earlier versions won’t support.

If you want to be able to downgrade smoothly, make a backup of your entire data
directory. Without this your node will need start syncing (or importing from
bootstrap.dat) anew afterwards. It is possible that the data from a completely
synchronised 0.10 node may be usable in older versions as-is, but this is not
supported and may break as soon as the older version attempts to reindex.

This does not affect wallet forward or backward compatibility. There are no
known problems when downgrading from 0.11.x to 0.10.x.

Notable changes since 0.11.1

BIP65 soft fork to enforce OP_CHECKLOCKTIMEVERIFY opcode

This release includes several changes related to the BIP65 [https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki] soft fork
which redefines the existing OP_NOP2 opcode as OP_CHECKLOCKTIMEVERIFY
(CLTV) so that a transaction output can be made unspendable until a
specified point in the future.

	This release will only relay and mine transactions spending a CLTV
output if they comply with the BIP65 rules as provided in code.

	This release will produce version 4 blocks by default. Please see the
notice to miners below.

	Once 951 out of a sequence of 1,001 blocks on the local node’s best block
chain contain version 4 (or higher) blocks, this release will no
longer accept new version 3 blocks and it will only accept version 4
blocks if they comply with the BIP65 rules for CLTV.

For more information about the soft-forking change, please see
https://github.com/bitcoin/bitcoin/pull/6351

Graphs showing the progress towards block version 4 adoption may be
found at the URLs below:

	Block versions over the last 50,000 blocks as progress towards BIP65
consensus enforcement: http://bitcoin.sipa.be/ver-50k.png

	Block versions over the last 2,000 blocks showing the days to the
earliest possible BIP65 consensus-enforced block: http://bitcoin.sipa.be/ver-2k.png

Notice to miners: Bitcoin Core’s block templates are now for
version 4 blocks only, and any mining software relying on its
getblocktemplate must be updated in parallel to use libblkmaker either
version 0.4.3 or any version from 0.5.2 onward.

	If you are solo mining, this will affect you the moment you upgrade
Bitcoin Core, which must be done prior to BIP65 achieving its 951/1001
status.

	If you are mining with the stratum mining protocol: this does not
affect you.

	If you are mining with the getblocktemplate protocol to a pool: this
will affect you at the pool operator’s discretion, which must be no
later than BIP65 achieving its 951/1001 status.

BIP113 mempool-only locktime enforcement using GetMedianTimePast()

Bitcoin transactions currently may specify a locktime indicating when
they may be added to a valid block. Current consensus rules require
that blocks have a block header time greater than the locktime specified
in any transaction in that block.

Miners get to choose what time they use for their header time, with the
consensus rule being that no node will accept a block whose time is more
than two hours in the future. This creates a incentive for miners to
set their header times to future values in order to include locktimed
transactions which weren’t supposed to be included for up to two more
hours.

The consensus rules also specify that valid blocks may have a header
time greater than that of the median of the 11 previous blocks. This
GetMedianTimePast() time has a key feature we generally associate with
time: it can’t go backwards.

BIP113 [https://github.com/bitcoin/bips/blob/master/bip-0113.mediawiki] specifies a soft fork (not enforced in this release) that
weakens this perverse incentive for individual miners to use a future
time by requiring that valid blocks have a computed GetMedianTimePast()
greater than the locktime specified in any transaction in that block.

Mempool inclusion rules currently require transactions to be valid for
immediate inclusion in a block in order to be accepted into the mempool.
This release begins applying the BIP113 rule to received transactions,
so transaction whose time is greater than the GetMedianTimePast() will
no longer be accepted into the mempool.

Implication for miners: you will begin rejecting transactions that
would not be valid under BIP113, which will prevent you from producing
invalid blocks if/when BIP113 is enforced on the network. Any
transactions which are valid under the current rules but not yet valid
under the BIP113 rules will either be mined by other miners or delayed
until they are valid under BIP113. Note, however, that time-based
locktime transactions are more or less unseen on the network currently.

Implication for users: GetMedianTimePast() always trails behind the
current time, so a transaction locktime set to the present time will be
rejected by nodes running this release until the median time moves
forward. To compensate, subtract one hour (3,600 seconds) from your
locktimes to allow those transactions to be included in mempools at
approximately the expected time.

Windows bug fix for corrupted UTXO database on unclean shutdowns

Several Windows users reported that they often need to reindex the
entire blockchain after an unclean shutdown of Bitcoin Core on Windows
(or an unclean shutdown of Windows itself). Although unclean shutdowns
remain unsafe, this release no longer relies on memory-mapped files for
the UTXO database, which significantly reduced the frequency of unclean
shutdowns leading to required reindexes during testing.

For more information, see: https://github.com/bitcoin/bitcoin/pull/6917

Other fixes for database corruption on Windows are expected in the
next major release.

0.11.2 Change log

Detailed release notes follow. This overview includes changes that affect
behavior, not code moves, refactors and string updates. For convenience in locating
the code changes and accompanying discussion, both the pull request and
git merge commit are mentioned.

	#6124 684636b Make CScriptNum() take nMaxNumSize as an argument

	#6124 4fa7a04 Replace NOP2 with CHECKLOCKTIMEVERIFY (BIP65)

	#6124 6ea5ca4 Enable CHECKLOCKTIMEVERIFY as a standard script verify flag

	#6351 5e82e1c Add CHECKLOCKTIMEVERIFY (BIP65) soft-fork logic

	#6353 ba1da90 Show softfork status in getblockchaininfo

	#6351 6af25b0 Add BIP65 to getblockchaininfo softforks list

	#6688 01878c9 Fix locking in GetTransaction

	#6653 b3eaa30 [Qt] Raise debug window when requested

	#6600 1e672ae Debian/Ubuntu: Include bitcoin-tx binary

	#6600 2394f4d Debian/Ubuntu: Split bitcoin-tx into its own package

	#5987 33d6825 Bugfix: Allow mining on top of old tip blocks for testnet

	#6852 21e58b8 build: make sure OpenSSL heeds noexecstack

	#6846 af6edac alias -h for --help

	#6867 95a5039 Set TCP_NODELAY on P2P sockets.

	#6856 dfe55bd Do not allow blockfile pruning during reindex.

	#6566 a1d3c6f Add rules–presently disabled–for using GetMedianTimePast as end point for lock-time calculations

	#6566 f720c5f Enable policy enforcing GetMedianTimePast as the end point of lock-time constraints

	#6917 0af5b8e leveldb: Win32WritableFile without memory mapping

	#6948 4e895b0 Always flush block and undo when switching to new file

Credits

Thanks to everyone who directly contributed to this release:

	Alex Morcos

	฿tcDrak

	Chris Kleeschulte

	Daniel Cousens

	Diego Viola

	Eric Lombrozo

	Esteban Ordano

	Gregory Maxwell

	Luke Dashjr

	Marco Falke

	Mark Friedenbach

	Matt Corallo

	Micha

	Mitchell Cash

	Peter Todd

	Pieter Wuille

	Wladimir J. van der Laan

	Zak Wilcox

And those who contributed additional code review and/or security research.

As well as everyone that helped translating on Transifex [https://www.transifex.com/projects/p/bitcoin/].

 Upgrading and downgrading

 Bitcoin Core version 0.12.0 is now available from:

https://bitcoin.org/bin/bitcoin-core-0.12.0/

This is a new major version release, bringing new features and other improvements.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

Upgrading and downgrading

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

Downgrade warning

Downgrade to a version < 0.10.0

Because release 0.10.0 and later makes use of headers-first synchronization and
parallel block download (see further), the block files and databases are not
backwards-compatible with pre-0.10 versions of Bitcoin Core or other software:

	Blocks will be stored on disk out of order (in the order they are
received, really), which makes it incompatible with some tools or
other programs. Reindexing using earlier versions will also not work
anymore as a result of this.

	The block index database will now hold headers for which no block is
stored on disk, which earlier versions won’t support.

If you want to be able to downgrade smoothly, make a backup of your entire data
directory. Without this your node will need start syncing (or importing from
bootstrap.dat) anew afterwards. It is possible that the data from a completely
synchronised 0.10 node may be usable in older versions as-is, but this is not
supported and may break as soon as the older version attempts to reindex.

This does not affect wallet forward or backward compatibility.

Downgrade to a version < 0.12.0

Because release 0.12.0 and later will obfuscate the chainstate on every
fresh sync or reindex, the chainstate is not backwards-compatible with
pre-0.12 versions of Bitcoin Core or other software.

If you want to downgrade after you have done a reindex with 0.12.0 or later,
you will need to reindex when you first start Bitcoin Core version 0.11 or
earlier.

Notable changes

Signature validation using libsecp256k1

ECDSA signatures inside Bitcoin transactions now use validation using
libsecp256k1 [https://github.com/bitcoin/secp256k1] instead of OpenSSL.

Depending on the platform, this means a significant speedup for raw signature
validation speed. The advantage is largest on x86_64, where validation is over
five times faster. In practice, this translates to a raw reindexing and new
block validation times that are less than half of what it was before.

Libsecp256k1 has undergone very extensive testing and validation.

A side effect of this change is that libconsensus no longer depends on OpenSSL.

Reduce upload traffic

A major part of the outbound traffic is caused by serving historic blocks to
other nodes in initial block download state.

It is now possible to reduce the total upload traffic via the -maxuploadtarget
parameter. This is not a hard limit but a threshold to minimize the outbound
traffic. When the limit is about to be reached, the uploaded data is cut by not
serving historic blocks (blocks older than one week).
Moreover, any SPV peer is disconnected when they request a filtered block.

This option can be specified in MiB per day and is turned off by default
(-maxuploadtarget=0).
The recommended minimum is 144 * MAX_BLOCK_SIZE (currently 144MB) per day.

Whitelisted peers will never be disconnected, although their traffic counts for
calculating the target.

A more detailed documentation about keeping traffic low can be found in
/doc/reduce-traffic.md.

Direct headers announcement (BIP 130)

Between compatible peers, [BIP 130]
(https://github.com/bitcoin/bips/blob/master/bip-0130.mediawiki)
direct headers announcement is used. This means that blocks are advertised by
announcing their headers directly, instead of just announcing the hash. In a
reorganization, all new headers are sent, instead of just the new tip. This
can often prevent an extra roundtrip before the actual block is downloaded.

With this change, pruning nodes are now able to relay new blocks to compatible
peers.

Memory pool limiting

Previous versions of Bitcoin Core had their mempool limited by checking
a transaction’s fees against the node’s minimum relay fee. There was no
upper bound on the size of the mempool and attackers could send a large
number of transactions paying just slighly more than the default minimum
relay fee to crash nodes with relatively low RAM. A temporary workaround
for previous versions of Bitcoin Core was to raise the default minimum
relay fee.

Bitcoin Core 0.12 will have a strict maximum size on the mempool. The
default value is 300 MB and can be configured with the -maxmempool
parameter. Whenever a transaction would cause the mempool to exceed
its maximum size, the transaction that (along with in-mempool descendants) has
the lowest total feerate (as a package) will be evicted and the node’s effective
minimum relay feerate will be increased to match this feerate plus the initial
minimum relay feerate. The initial minimum relay feerate is set to
1000 satoshis per kB.

Bitcoin Core 0.12 also introduces new default policy limits on the length and
size of unconfirmed transaction chains that are allowed in the mempool
(generally limiting the length of unconfirmed chains to 25 transactions, with a
total size of 101 KB). These limits can be overriden using command line
arguments; see the extended help (--help -help-debug) for more information.

Opt-in Replace-by-fee transactions

It is now possible to replace transactions in the transaction memory pool of
Bitcoin Core 0.12 nodes. Bitcoin Core will only allow replacement of
transactions which have any of their inputs’ nSequence number set to less
than 0xffffffff - 1. Moreover, a replacement transaction may only be
accepted when it pays sufficient fee, as described in [BIP 125]
(https://github.com/bitcoin/bips/blob/master/bip-0125.mediawiki).

Transaction replacement can be disabled with a new command line option,
-mempoolreplacement=0. Transactions signaling replacement under BIP125 will
still be allowed into the mempool in this configuration, but replacements will
be rejected. This option is intended for miners who want to continue the
transaction selection behavior of previous releases.

The -mempoolreplacement option is not recommended for wallet users seeking
to avoid receipt of unconfirmed opt-in transactions, because this option does
not prevent transactions which are replaceable under BIP 125 from being accepted
(only subsequent replacements, which other nodes on the network that implement
BIP 125 are likely to relay and mine). Wallet users wishing to detect whether
a transaction is subject to replacement under BIP 125 should instead use the
updated RPC calls gettransaction and listtransactions, which now have an
additional field in the output indicating if a transaction is replaceable under
BIP125 (“bip125-replaceable”).

Note that the wallet in Bitcoin Core 0.12 does not yet have support for
creating transactions that would be replaceable under BIP 125.

RPC: Random-cookie RPC authentication

When no -rpcpassword is specified, the daemon now uses a special ‘cookie’
file for authentication. This file is generated with random content when the
daemon starts, and deleted when it exits. Its contents are used as
authentication token. Read access to this file controls who can access through
RPC. By default it is stored in the data directory but its location can be
overridden with the option -rpccookiefile.

This is similar to Tor’s CookieAuthentication: see
https://www.torproject.org/docs/tor-manual.html.en

This allows running bitcoind without having to do any manual configuration.

Relay: Any sequence of pushdatas in OP_RETURN outputs now allowed

Previously OP_RETURN outputs with a payload were only relayed and mined if they
had a single pushdata. This restriction has been lifted to allow any
combination of data pushes and numeric constant opcodes (OP_1 to OP_16) after
the OP_RETURN. The limit on OP_RETURN output size is now applied to the entire
serialized scriptPubKey, 83 bytes by default. (the previous 80 byte default plus
three bytes overhead)

Relay and Mining: Priority transactions

Bitcoin Core has a heuristic ‘priority’ based on coin value and age. This
calculation is used for relaying of transactions which do not pay the
minimum relay fee, and can be used as an alternative way of sorting
transactions for mined blocks. Bitcoin Core will relay transactions with
insufficient fees depending on the setting of -limitfreerelay=<r> (default:
r=15 kB per minute) and -blockprioritysize=<s>.

In Bitcoin Core 0.12, when mempool limit has been reached a higher minimum
relay fee takes effect to limit memory usage. Transactions which do not meet
this higher effective minimum relay fee will not be relayed or mined even if
they rank highly according to the priority heuristic.

The mining of transactions based on their priority is also now disabled by
default. To re-enable it, simply set -blockprioritysize=<n> where is the size
in bytes of your blocks to reserve for these transactions. The old default was
50k, so to retain approximately the same policy, you would set
-blockprioritysize=50000.

Additionally, as a result of computational simplifications, the priority value
used for transactions received with unconfirmed inputs is lower than in prior
versions due to avoiding recomputing the amounts as input transactions confirm.

External miner policy set via the prioritisetransaction RPC to rank
transactions already in the mempool continues to work as it has previously.
Note, however, that if mining priority transactions is left disabled, the
priority delta will be ignored and only the fee metric will be effective.

This internal automatic prioritization handling is being considered for removal
entirely in Bitcoin Core 0.13, and it is at this time undecided whether the
more accurate priority calculation for chained unconfirmed transactions will be
restored. Community direction on this topic is particularly requested to help
set project priorities.

Automatically use Tor hidden services

Starting with Tor version 0.2.7.1 it is possible, through Tor’s control socket
API, to create and destroy ‘ephemeral’ hidden services programmatically.
Bitcoin Core has been updated to make use of this.

This means that if Tor is running (and proper authorization is available),
Bitcoin Core automatically creates a hidden service to listen on, without
manual configuration. Bitcoin Core will also use Tor automatically to connect
to other .onion nodes if the control socket can be successfully opened. This
will positively affect the number of available .onion nodes and their usage.

This new feature is enabled by default if Bitcoin Core is listening, and
a connection to Tor can be made. It can be configured with the -listenonion,
-torcontrol and -torpassword settings. To show verbose debugging
information, pass -debug=tor.

Notifications through ZMQ

Bitcoind can now (optionally) asynchronously notify clients through a
ZMQ-based PUB socket of the arrival of new transactions and blocks.
This feature requires installation of the ZMQ C API library 4.x and
configuring its use through the command line or configuration file.
Please see docs/zmq.md for details of operation.

Wallet: Transaction fees

Various improvements have been made to how the wallet calculates
transaction fees.

Users can decide to pay a predefined fee rate by setting -paytxfee=<n>
(or settxfee <n> rpc during runtime). A value of n=0 signals Bitcoin
Core to use floating fees. By default, Bitcoin Core will use floating
fees.

Based on past transaction data, floating fees approximate the fees
required to get into the mth block from now. This is configurable
with -txconfirmtarget=<m> (default: 2).

Sometimes, it is not possible to give good estimates, or an estimate
at all. Therefore, a fallback value can be set with -fallbackfee=<f>
(default: 0.0002 BTC/kB).

At all times, Bitcoin Core will cap fees at -maxtxfee=<x> (default:
0.10) BTC.
Furthermore, Bitcoin Core will never create transactions paying less than
the current minimum relay fee.
Finally, a user can set the minimum fee rate for all transactions with
-mintxfee=<i>, which defaults to 1000 satoshis per kB.

Wallet: Negative confirmations and conflict detection

The wallet will now report a negative number for confirmations that indicates
how deep in the block chain the conflict is found. For example, if a transaction
A has 5 confirmations and spends the same input as a wallet transaction B, B
will be reported as having -5 confirmations. If another wallet transaction C
spends an output from B, it will also be reported as having -5 confirmations.
To detect conflicts with historical transactions in the chain a one-time
-rescan may be needed.

Unlike earlier versions, unconfirmed but non-conflicting transactions will never
get a negative confirmation count. They are not treated as spendable unless
they’re coming from ourself (change) and accepted into our local mempool,
however. The new “trusted” field in the listtransactions RPC output
indicates whether outputs of an unconfirmed transaction are considered
spendable.

Wallet: Merkle branches removed

Previously, every wallet transaction stored a Merkle branch to prove its
presence in blocks. This wasn’t being used for more than an expensive
sanity check. Since 0.12, these are no longer stored. When loading a
0.12 wallet into an older version, it will automatically rescan to avoid
failed checks.

Wallet: Pruning

With 0.12 it is possible to use wallet functionality in pruned mode.
This can reduce the disk usage from currently around 60 GB to
around 2 GB.

However, rescans as well as the RPCs importwallet, importaddress,
importprivkey are disabled.

To enable block pruning set prune=<N> on the command line or in
bitcoin.conf, where N is the number of MiB to allot for
raw block & undo data.

A value of 0 disables pruning. The minimal value above 0 is 550. Your
wallet is as secure with high values as it is with low ones. Higher
values merely ensure that your node will not shut down upon blockchain
reorganizations of more than 2 days - which are unlikely to happen in
practice. In future releases, a higher value may also help the network
as a whole: stored blocks could be served to other nodes.

For further information about pruning, you may also consult the release
notes of v0.11.0 [https://github.com/bitcoin/bitcoin/blob/v0.11.0/doc/release-notes.md#block-file-pruning].

NODE_BLOOM service bit

Support for the NODE_BLOOM service bit, as described in BIP
111 [https://github.com/bitcoin/bips/blob/master/bip-0111.mediawiki], has been
added to the P2P protocol code.

BIP 111 defines a service bit to allow peers to advertise that they support
bloom filters (such as used by SPV clients) explicitly. It also bumps the protocol
version to allow peers to identify old nodes which allow bloom filtering of the
connection despite lacking the new service bit.

In this version, it is only enforced for peers that send protocol versions
>=70011. For the next major version it is planned that this restriction will be
removed. It is recommended to update SPV clients to check for the NODE_BLOOM
service bit for nodes that report versions newer than 70011.

Option parsing behavior

Command line options are now parsed strictly in the order in which they are
specified. It used to be the case that -X -noX ends up, unintuitively, with X
set, as -X had precedence over -noX. This is no longer the case. Like for
other software, the last specified value for an option will hold.

RPC: Low-level API changes

	Monetary amounts can be provided as strings. This means that for example the
argument to sendtoaddress can be “0.0001” instead of 0.0001. This can be an
advantage if a JSON library insists on using a lossy floating point type for
numbers, which would be dangerous for monetary amounts.

	The asm property of each scriptSig now contains the decoded signature hash
type for each signature that provides a valid defined hash type.

	OP_NOP2 has been renamed to OP_CHECKLOCKTIMEVERIFY by BIP 65 [https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki]

The following items contain assembly representations of scriptSig signatures
and are affected by this change:

	RPC getrawtransaction

	RPC decoderawtransaction

	RPC decodescript

	REST /rest/tx/ (JSON format)

	REST /rest/block/ (JSON format when including extended tx details)

	bitcoin-tx -json

For example, the scriptSig.asm property of a transaction input that
previously showed an assembly representation of:

304502207fa7a6d1e0ee81132a269ad84e68d695483745cde8b541e3bf630749894e342a022100c1f7ab20e13e22fb95281a870f3dcf38d782e53023ee313d741ad0cfbc0c509001 400000 OP_NOP2

now shows as:

304502207fa7a6d1e0ee81132a269ad84e68d695483745cde8b541e3bf630749894e342a022100c1f7ab20e13e22fb95281a870f3dcf38d782e53023ee313d741ad0cfbc0c5090[ALL] 400000 OP_CHECKLOCKTIMEVERIFY

Note that the output of the RPC decodescript did not change because it is
configured specifically to process scriptPubKey and not scriptSig scripts.

RPC: SSL support dropped

SSL support for RPC, previously enabled by the option rpcssl has been dropped
from both the client and the server. This was done in preparation for removing
the dependency on OpenSSL for the daemon completely.

Trying to use rpcssl will result in an error:

Error: SSL mode for RPC (-rpcssl) is no longer supported.

If you are one of the few people that relies on this feature, a flexible
migration path is to use stunnel. This is an utility that can tunnel
arbitrary TCP connections inside SSL. On e.g. Ubuntu it can be installed with:

sudo apt-get install stunnel4

Then, to tunnel a SSL connection on 28332 to a RPC server bound on localhost on port 18332 do:

stunnel -d 28332 -r 127.0.0.1:18332 -p stunnel.pem -P ''

It can also be set up system-wide in inetd style.

Another way to re-attain SSL would be to setup a httpd reverse proxy. This solution
would allow the use of different authentication, loadbalancing, on-the-fly compression and
caching. A sample config for apache2 could look like:

Listen 443

NameVirtualHost *:443
<VirtualHost *:443>

SSLEngine On
SSLCertificateFile /etc/apache2/ssl/server.crt
SSLCertificateKeyFile /etc/apache2/ssl/server.key

<Location /bitcoinrpc>
 ProxyPass http://127.0.0.1:8332/
 ProxyPassReverse http://127.0.0.1:8332/
 # optional enable digest auth
 # AuthType Digest
 # ...

 # optional bypass bitcoind rpc basic auth
 # RequestHeader set Authorization "Basic <hash>"
 # get the <hash> from the shell with: base64 <<< bitcoinrpc:<password>
</Location>

Or, balance the load:
ProxyPass / balancer://balancer_cluster_name

</VirtualHost>

Mining Code Changes

The mining code in 0.12 has been optimized to be significantly faster and use less
memory. As part of these changes, consensus critical calculations are cached on a
transaction’s acceptance into the mempool and the mining code now relies on the
consistency of the mempool to assemble blocks. However all blocks are still tested
for validity after assembly.

Other P2P Changes

The list of banned peers is now stored on disk rather than in memory.
Restarting bitcoind will no longer clear out the list of banned peers; instead
a new RPC call (clearbanned) can be used to manually clear the list. The new
setban RPC call can also be used to manually ban or unban a peer.

0.12.0 Change log

Detailed release notes follow. This overview includes changes that affect
behavior, not code moves, refactors and string updates. For convenience in locating
the code changes and accompanying discussion, both the pull request and
git merge commit are mentioned.

RPC and REST

	#6121 466f0ea Convert entire source tree from json_spirit to UniValue (Jonas Schnelli)

	#6234 d38cd47 fix rpcmining/getblocktemplate univalue transition logic error (Jonas Schnelli)

	#6239 643114f Don’t go through double in AmountFromValue and ValueFromAmount (Wladimir J. van der Laan)

	#6266 ebab5d3 Fix univalue handling of \u0000 characters. (Daniel Kraft)

	#6276 f3d4dbb Fix getbalance * 0 (Tom Harding)

	#6257 5ebe7db Add paytxfee and errors JSON fields where appropriate (Stephen)

	#6271 754aae5 New RPC command disconnectnode (Alex van der Peet)

	#6158 0abfa8a Add setban/listbanned RPC commands (Jonas Schnelli)

	#6307 7ecdcd9 rpcban fixes (Jonas Schnelli)

	#6290 5753988 rpc: make gettxoutsettinfo run lock-free (Wladimir J. van der Laan)

	#6262 247b914 Return all available information via RPC call “validateaddress” (dexX7)

	#6339 c3f0490 UniValue: don’t escape solidus, keep espacing of reverse solidus (Jonas Schnelli)

	#6353 6bcb0a2 Show softfork status in getblockchaininfo (Wladimir J. van der Laan)

	#6247 726e286 Add getblockheader RPC call (Peter Todd)

	#6362 d6db115 Fix null id in RPC response during startup (Forrest Voight)

	#5486 943b322 [REST] JSON support for /rest/headers (Jonas Schnelli)

	#6379 c52e8b3 rpc: Accept scientific notation for monetary amounts in JSON (Wladimir J. van der Laan)

	#6388 fd5dfda rpc: Implement random-cookie based authentication (Wladimir J. van der Laan)

	#6457 3c923e8 Include pruned state in chaininfo.json (Simon Males)

	#6456 bfd807f rpc: Avoid unnecessary parsing roundtrip in number formatting, fix locale issue (Wladimir J. van der Laan)

	#6380 240b30e rpc: Accept strings in AmountFromValue (Wladimir J. van der Laan)

	#6346 6bb2805 Add OP_RETURN support in createrawtransaction RPC call, add tests. (paveljanik)

	#6013 6feeec1 [REST] Add memory pool API (paveljanik)

	#6576 da9beb2 Stop parsing JSON after first finished construct. (Daniel Kraft)

	#5677 9aa9099 libevent-based http server (Wladimir J. van der Laan)

	#6633 bbc2b39 Report minimum ping time in getpeerinfo (Matt Corallo)

	#6648 cd381d7 Simplify logic of REST request suffix parsing. (Daniel Kraft)

	#6695 5e21388 libevent http fixes (Wladimir J. van der Laan)

	#5264 48efbdb show scriptSig signature hash types in transaction decodes. fixes #3166 (mruddy)

	#6719 1a9f19a Make HTTP server shutdown more graceful (Wladimir J. van der Laan)

	#6859 0fbfc51 http: Restrict maximum size of http + headers (Wladimir J. van der Laan)

	#5936 bf7c195 [RPC] Add optional locktime to createrawtransaction (Tom Harding)

	#6877 26f5b34 rpc: Add maxmempool and effective min fee to getmempoolinfo (Wladimir J. van der Laan)

	#6970 92701b3 Fix crash in validateaddress with -disablewallet (Wladimir J. van der Laan)

	#5574 755b4ba Expose GUI labels in RPC as comments (Luke-Jr)

	#6990 dbd2c13 http: speed up shutdown (Wladimir J. van der Laan)

	#7013 36baa9f Remove LOCK(cs_main) from decodescript (Peter Todd)

	#6999 972bf9c add (max)uploadtarget infos to getnettotals RPC help (Jonas Schnelli)

	#7011 31de241 Add mediantime to getblockchaininfo (Peter Todd)

	#7065 f91e29f http: add Boost 1.49 compatibility (Wladimir J. van der Laan)

	#7087 be281d8 [Net]Add -enforcenodebloom option (Patrick Strateman)

	#7044 438ee59 RPC: Added additional config option for multiple RPC users. (Gregory Sanders)

	#7072 c143c49 [RPC] Add transaction size to JSON output (Nikita Zhavoronkov)

	#7022 9afbd96 Change default block priority size to 0 (Alex Morcos)

	#7141 c0c08c7 rpc: Don’t translate warning messages (Wladimir J. van der Laan)

	#7312 fd4bd50 Add RPC call abandontransaction (Alex Morcos)

	#7222 e25b158 RPC: indicate which transactions are replaceable (Suhas Daftuar)

	#7472 b2f2b85 rpc: Add WWW-Authenticate header to 401 response (Wladimir J. van der Laan)

	#7469 9cb31e6 net.h fix spelling: misbeha{b,v}ing (Matt)

Configuration and command-line options

	#6164 8d05ec7 Allow user to use -debug=1 to enable all debugging (lpescher)

	#5288 4452205 Added -whiteconnections=<n> option (Josh Lehan)

	#6284 10ac38e Fix argument parsing oddity with -noX (Wladimir J. van der Laan)

	#6489 c9c017a Give a better error message if system clock is bad (Casey Rodarmor)

	#6462 c384800 implement uacomment config parameter which can add comments to user agent as per BIP-0014 (Pavol Rusnak)

	#6647 a3babc8 Sanitize uacomment (MarcoFalke)

	#6742 3b2d37c Changed logging to make -logtimestamps to work also for -printtoconsole (arnuschky)

	#6846 2cd020d alias -h for -help (Daniel Cousens)

	#6622 7939164 Introduce -maxuploadtarget (Jonas Schnelli)

	#6881 2b62551 Debug: Add option for microsecond precision in debug.log (Suhas Daftuar)

	#6776 e06c14f Support -checkmempool=N, which runs checks once every N transactions (Pieter Wuille)

	#6896 d482c0a Make -checkmempool=1 not fail through int32 overflow (Pieter Wuille)

	#6993 b632145 Add -blocksonly option (Patrick Strateman)

	#7323 a344880 0.12: Backport -bytespersigop option (Luke-Jr)

	#7386 da83ecd Add option -permitrbf to set transaction replacement policy (Wladimir J. van der Laan)

	#7290 b16b5bc Add missing options help (MarcoFalke)

	#7440 c76bfff Rename permitrbf to mempoolreplacement and provide minimal string-list forward compatibility (Luke-Jr)

Block and transaction handling

	#6203 f00b623 Remove P2SH coinbase flag, no longer interesting (Luke-Jr)

	#6222 9c93ee5 Explicitly set tx.nVersion for the genesis block and mining tests (Mark Friedenbach)

	#5985 3a1d3e8 Fix removing of orphan transactions (Alex Morcos)

	#6221 dd8fe82 Prune: Support noncontiguous block files (Adam Weiss)

	#6124 41076aa Mempool only CHECKLOCKTIMEVERIFY (BIP65) verification, unparameterized version (Peter Todd)

	#6329 d0a10c1 acceptnonstdtxn option to skip (most) “non-standard transaction” checks, for testnet/regtest only (Luke-Jr)

	#6410 7cdefb9 Implement accurate memory accounting for mempool (Pieter Wuille)

	#6444 24ce77d Exempt unspendable transaction outputs from dust checks (dexX7)

	#5913 a0625b8 Add absurdly high fee message to validation state (Shaul Kfir)

	#6177 2f746c6 Prevent block.nTime from decreasing (Mark Friedenbach)

	#6377 e545371 Handle no chain tip available in InvalidChainFound() (Ross Nicoll)

	#6551 39ddaeb Handle leveldb::DestroyDB() errors on wipe failure (Adam Weiss)

	#6654 b0ce450 Mempool package tracking (Suhas Daftuar)

	#6715 82d2aef Fix mempool packages (Suhas Daftuar)

	#6680 4f44530 use CBlockIndex instead of uint256 for UpdatedBlockTip signal (Jonas Schnelli)

	#6650 4fac576 Obfuscate chainstate (James O’Beirne)

	#6777 9caaf6e Unobfuscate chainstate data in CCoinsViewDB::GetStats (James O’Beirne)

	#6722 3b20e23 Limit mempool by throwing away the cheapest txn and setting min relay fee to it (Matt Corallo)

	#6889 38369dd fix locking issue with new mempool limiting (Jonas Schnelli)

	#6464 8f3b3cd Always clean up manual transaction prioritization (Casey Rodarmor)

	#6865 d0badb9 Fix chainstate serialized_size computation (Pieter Wuille)

	#6566 ff057f4 BIP-113: Mempool-only median time-past as endpoint for lock-time calculations (Mark Friedenbach)

	#6934 3038eb6 Restores mempool only BIP113 enforcement (Gregory Maxwell)

	#6965 de7d459 Benchmark sanity checks and fork checks in ConnectBlock (Matt Corallo)

	#6918 eb6172a Make sigcache faster, more efficient, larger (Pieter Wuille)

	#6771 38ed190 Policy: Lower default limits for tx chains (Alex Morcos)

	#6932 73fa5e6 ModifyNewCoins saves database lookups (Alex Morcos)

	#5967 05d5918 Alter assumptions in CCoinsViewCache::BatchWrite (Alex Morcos)

	#6871 0e93586 nSequence-based Full-RBF opt-in (Peter Todd)

	#7008 eb77416 Lower bound priority (Alex Morcos)

	#6915 2ef5ffa [Mempool] Improve removal of invalid transactions after reorgs (Suhas Daftuar)

	#6898 4077ad2 Rewrite CreateNewBlock (Alex Morcos)

	#6872 bdda4d5 Remove UTXO cache entries when the tx they were added for is removed/does not enter mempool (Matt Corallo)

	#7062 12c469b [Mempool] Fix mempool limiting and replace-by-fee for PrioritiseTransaction (Suhas Daftuar)

	#7276 76de36f Report non-mandatory script failures correctly (Pieter Wuille)

	#7217 e08b7cb Mark blocks with too many sigops as failed (Suhas Daftuar)

	#7387 f4b2ce8 Get rid of inaccurate ScriptSigArgsExpected (Pieter Wuille)

P2P protocol and network code

	#6172 88a7ead Ignore getheaders requests when not synced (Suhas Daftuar)

	#5875 9d60602 Be stricter in processing unrequested blocks (Suhas Daftuar)

	#6256 8ccc07c Use best header chain timestamps to detect partitioning (Gavin Andresen)

	#6283 a903ad7 make CAddrMan::size() return the correct type of size_t (Diapolo)

	#6272 40400d5 Improve proxy initialization (continues #4871) (Wladimir J. van der Laan, Diapolo)

	#6310 66e5465 banlist.dat: store banlist on disk (Jonas Schnelli)

	#6412 1a2de32 Test whether created sockets are select()able (Pieter Wuille)

	#6498 219b916 Keep track of recently rejected transactions with a rolling bloom filter (cont’d) (Peter Todd)

	#6556 70ec975 Fix masking of irrelevant bits in address groups. (Alex Morcos)

	#6530 ea19c2b Improve addrman Select() performance when buckets are nearly empty (Pieter Wuille)

	#6583 af9305a add support for miniupnpc api version 14 (Pavel Vasin)

	#6374 69dc5b5 Connection slot exhaustion DoS mitigation (Patrick Strateman)

	#6636 536207f net: correctly initialize nMinPingUsecTime (Wladimir J. van der Laan)

	#6579 0c27795 Add NODE_BLOOM service bit and bump protocol version (Matt Corallo)

	#6148 999c8be Relay blocks when pruning (Suhas Daftuar)

	#6588 cf9bb11 In (strCommand == “tx”), return if AlreadyHave() (Tom Harding)

	#6974 2f71b07 Always allow getheaders from whitelisted peers (Wladimir J. van der Laan)

	#6639 bd629d7 net: Automatically create hidden service, listen on Tor (Wladimir J. van der Laan)

	#6984 9ffc687 don’t enforce maxuploadtarget’s disconnect for whitelisted peers (Jonas Schnelli)

	#7046 c322652 Net: Improve blocks only mode. (Patrick Strateman)

	#7090 d6454f6 Connect to Tor hidden services by default (when listening on Tor) (Peter Todd)

	#7106 c894fbb Fix and improve relay from whitelisted peers (Pieter Wuille)

	#7129 5d5ef3a Direct headers announcement (rebase of #6494) (Pieter Wuille)

	#7079 1b5118b Prevent peer flooding inv request queue (redux) (redux) (Gregory Maxwell)

	#7166 6ba25d2 Disconnect on mempool requests from peers when over the upload limit. (Gregory Maxwell)

	#7133 f31955d Replace setInventoryKnown with a rolling bloom filter (rebase of #7100) (Pieter Wuille)

	#7174 82aff88 Don’t do mempool lookups for “mempool” command without a filter (Matt Corallo)

	#7179 44fef99 net: Fix sent reject messages for blocks and transactions (Wladimir J. van der Laan)

	#7181 8fc174a net: Add and document network messages in protocol.h (Wladimir J. van der Laan)

	#7125 10b88be Replace global trickle node with random delays (Pieter Wuille)

	#7415 cb83beb net: Hardcoded seeds update January 2016 (Wladimir J. van der Laan)

	#7438 e2d9a58 Do not absolutely protect local peers; decide group ties based on time (Gregory Maxwell)

	#7439 86755bc Add whitelistforcerelay to control forced relaying. [#7099 redux] (Gregory Maxwell)

	#7482 e16f5b4 Ensure headers count is correct (Suhas Daftuar)

Validation

	#5927 8d9f0a6 Reduce checkpoints’ effect on consensus. (Pieter Wuille)

	#6299 24f2489 Bugfix: Don’t check the genesis block header before accepting it (Jorge Timón)

	#6361 d7ada03 Use real number of cores for default -par, ignore virtual cores (Wladimir J. van der Laan)

	#6519 87f37e2 Make logging for validation optional (Wladimir J. van der Laan)

	#6351 2a1090d CHECKLOCKTIMEVERIFY (BIP65) IsSuperMajority() soft-fork (Peter Todd)

	#6931 54e8bfe Skip BIP 30 verification where not necessary (Alex Morcos)

	#6954 e54ebbf Switch to libsecp256k1-based ECDSA validation (Pieter Wuille)

	#6508 61457c2 Switch to a constant-space Merkle root/branch algorithm. (Pieter Wuille)

	#6914 327291a Add pre-allocated vector type and use it for CScript (Pieter Wuille)

	#7500 889e5b3 Correctly report high-S violations (Pieter Wuille)

Build system

	#6210 0e4f2a0 build: disable optional use of gmp in internal secp256k1 build (Wladimir J. van der Laan)

	#6214 87406aa [OSX] revert renaming of Bitcoin-Qt.app and use CFBundleDisplayName (partial revert of #6116) (Jonas Schnelli)

	#6218 9d67b10 build/gitian misc updates (Cory Fields)

	#6269 d4565b6 gitian: Use the new bitcoin-detached-sigs git repo for OSX signatures (Cory Fields)

	#6418 d4a910c Add autogen.sh to source tarball. (randy-waterhouse)

	#6373 1ae3196 depends: non-qt bumps for 0.12 (Cory Fields)

	#6434 059b352 Preserve user-passed CXXFLAGS with –enable-debug (Gavin Andresen)

	#6501 fee6554 Misc build fixes (Cory Fields)

	#6600 ef4945f Include bitcoin-tx binary on Debian/Ubuntu (Zak Wilcox)

	#6619 4862708 depends: bump miniupnpc and ccache (Michael Ford)

	#6801 ae69a75 [depends] Latest config.guess and config.sub (Michael Ford)

	#6938 193f7b5 build: If both Qt4 and Qt5 are installed, use Qt5 (Wladimir J. van der Laan)

	#7092 348b281 build: Set osx permissions in the dmg to make Gatekeeper happy (Cory Fields)

	#6980 eccd671 [Depends] Bump Boost, miniupnpc, ccache & zeromq (Michael Ford)

	#7424 aa26ee0 Add security/export checks to gitian and fix current failures (Cory Fields)

Wallet

	#6183 87550ee Fix off-by-one error w/ nLockTime in the wallet (Peter Todd)

	#6057 ac5476e re-enable wallet in autoprune (Jonas Schnelli)

	#6356 9e6c33b Delay initial pruning until after wallet init (Adam Weiss)

	#6088 91389e5 fundrawtransaction (Matt Corallo)

	#6415 ddd8d80 Implement watchonly support in fundrawtransaction (Matt Corallo)

	#6567 0f0f323 Fix crash when mining with empty keypool. (Daniel Kraft)

	#6688 4939eab Fix locking in GetTransaction. (Alex Morcos)

	#6645 4dbd43e Enable wallet key imports without rescan in pruned mode. (Gregory Maxwell)

	#6550 5b77244 Do not store Merkle branches in the wallet. (Pieter Wuille)

	#5924 12a7712 Clean up change computation in CreateTransaction. (Daniel Kraft)

	#6906 48b5b84 Reject invalid pubkeys when reading ckey items from the wallet. (Gregory Maxwell)

	#7010 e0a5ef8 Fix fundrawtransaction handling of includeWatching (Peter Todd)

	#6851 616d61b Optimisation: Store transaction list order in memory rather than compute it every need (Luke-Jr)

	#6134 e92377f Improve usage of fee estimation code (Alex Morcos)

	#7103 a775182 [wallet, rpc tests] Fix settxfee, paytxfee (MarcoFalke)

	#7105 30c2d8c Keep track of explicit wallet conflicts instead of using mempool (Pieter Wuille)

	#7096 9490bd7 [Wallet] Improve minimum absolute fee GUI options (Jonas Schnelli)

	#6216 83f06ca Take the training wheels off anti-fee-sniping (Peter Todd)

	#4906 96e8d12 Issue#1643: Coinselection prunes extraneous inputs from ApproximateBestSubset (Murch)

	#7200 06c6a58 Checks for null data transaction before issuing error to debug.log (Andy Craze)

	#7296 a36d79b Add sane fallback for fee estimation (Alex Morcos)

	#7293 ff9b610 Add regression test for vValue sort order (MarcoFalke)

	#7306 4707797 Make sure conflicted wallet tx’s update balances (Alex Morcos)

	#7381 621bbd8 [walletdb] Fix syntax error in key parser (MarcoFalke)

	#7491 00ec73e wallet: Ignore MarkConflict if block hash is not known (Wladimir J. van der Laan)

	#7502 1329963 Update the wallet best block marker before pruning (Pieter Wuille)

GUI

	#6217 c57e12a disconnect peers from peers tab via context menu (Diapolo)

	#6209 ab0ec67 extend rpc console peers tab (Diapolo)

	#6484 1369d69 use CHashWriter also in SignVerifyMessageDialog (Pavel Vasin)

	#6487 9848d42 Introduce PlatformStyle (Wladimir J. van der Laan)

	#6505 100c9d3 cleanup icons (MarcoFalke)

	#4587 0c465f5 allow users to set -onion via GUI (Diapolo)

	#6529 c0f66ce show client user agent in debug window (Diapolo)

	#6594 878ea69 Disallow duplicate windows. (Casey Rodarmor)

	#5665 6f55cdd add verifySize() function to PaymentServer (Diapolo)

	#6317 ca5e2a1 minor optimisations in peertablemodel (Diapolo)

	#6315 e59d2a8 allow banning and unbanning over UI->peers table (Jonas Schnelli)

	#6653 e04b2fa Pop debug window in foreground when opened twice (MarcoFalke)

	#6864 c702521 Use monospace font (MarcoFalke)

	#6887 3694b74 Update coin control and smartfee labels (MarcoFalke)

	#7000 814697c add shortcurts for debug-/console-window (Jonas Schnelli)

	#6951 03403d8 Use maxTxFee instead of 10000000 (MarcoFalke)

	#7051 a190777 ui: Add “Copy raw transaction data” to transaction list context menu (Wladimir J. van der Laan)

	#6979 776848a simple mempool info in debug window (Jonas Schnelli)

	#7006 26af1ac add startup option to reset Qt settings (Jonas Schnelli)

	#6780 2a94cd6 Call init’s parameter interaction before we create the UI options model (Jonas Schnelli)

	#7112 96b8025 reduce cs_main locks during tip update, more fluently update UI (Jonas Schnelli)

	#7206 f43c2f9 Add “NODE_BLOOM” to guiutil so that peers don’t get UNKNOWN[4] (Matt Corallo)

	#7282 5cadf3e fix coincontrol update issue when deleting a send coins entry (Jonas Schnelli)

	#7319 1320300 Intro: Display required space (MarcoFalke)

	#7318 9265e89 quickfix for RPC timer interface problem (Jonas Schnelli)

	#7327 b16b5bc [Wallet] Transaction View: LastMonth calculation fixed (crowning-)

	#7364 7726c48 [qt] Windows: Make rpcconsole monospace font larger (MarcoFalke)

	#7384 294f432 [qt] Peertable: Increase SUBVERSION_COLUMN_WIDTH (MarcoFalke)

Tests and QA

	#6305 9005c91 build: comparison tool swap (Cory Fields)

	#6318 e307e13 build: comparison tool NPE fix (Cory Fields)

	#6337 0564c5b Testing infrastructure: mocktime fixes (Gavin Andresen)

	#6350 60abba1 add unit tests for the decodescript rpc (mruddy)

	#5881 3203a08 Fix and improve txn_doublespend.py test (Tom Harding)

	#6390 6a73d66 tests: Fix bitcoin-tx signing test case (Wladimir J. van der Laan)

	#6368 7fc25c2 CLTV: Add more tests to improve coverage (Esteban Ordano)

	#6414 5121c68 Fix intermittent test failure, reduce test time (Tom Harding)

	#6417 44fa82d [QA] fix possible reorg issue in (fund)rawtransaction(s).py RPC test (Jonas Schnelli)

	#6398 3d9362d rpc: Remove chain-specific RequireRPCPassword (Wladimir J. van der Laan)

	#6428 bb59e78 tests: Remove old sh-based test framework (Wladimir J. van der Laan)

	#5515 d946e9a RFC: Assert on probable deadlocks if the second lock isnt try_lock (Matt Corallo)

	#6287 d2464df Clang lock debug (Cory Fields)

	#6465 410fd74 Don’t share objects between TestInstances (Casey Rodarmor)

	#6534 6c1c7fd Fix test locking issues and un-revert the probable-deadlines assertions commit (Cory Fields)

	#6509 bb4faee Fix race condition on test node shutdown (Casey Rodarmor)

	#6523 561f8af Add p2p-fullblocktest.py (Casey Rodarmor)

	#6590 981fd92 Fix stale socket rebinding and re-enable python tests for Windows (Cory Fields)

	#6730 cb4d6d0 build: Remove dependency of bitcoin-cli on secp256k1 (Wladimir J. van der Laan)

	#6616 5ab5dca Regression Tests: Migrated rpc-tests.sh to all Python rpc-tests.py (Peter Tschipper)

	#6720 d479311 Creates unittests for addrman, makes addrman more testable. (Ethan Heilman)

	#6853 c834f56 Added fPowNoRetargeting field to Consensus::Params (Eric Lombrozo)

	#6827 87e5539 [rpc-tests] Check return code (MarcoFalke)

	#6848 f2c869a Add DERSIG transaction test cases (Ross Nicoll)

	#6813 5242bb3 Support gathering code coverage data for RPC tests with lcov (dexX7)

	#6888 c8322ff Clear strMiscWarning before running PartitionAlert (Eric Lombrozo)

	#6894 2675276 [Tests] Fix BIP65 p2p test (Suhas Daftuar)

	#6863 725539e [Test Suite] Fix test for null tx input (Daniel Kraft)

	#6926 a6d0d62 tests: Initialize networking on windows (Wladimir J. van der Laan)

	#6822 9fa54a1 [tests] Be more strict checking dust (MarcoFalke)

	#6804 5fcc14e [tests] Add basic coverage reporting for RPC tests (James O’Beirne)

	#7045 72dccfc Bugfix: Use unique autostart filenames on Linux for testnet/regtest (Luke-Jr)

	#7095 d8368a0 Replace scriptnum_test’s normative ScriptNum implementation (Wladimir J. van der Laan)

	#7063 6abf6eb [Tests] Add prioritisetransaction RPC test (Suhas Daftuar)

	#7137 16f4a6e Tests: Explicitly set chain limits in replace-by-fee test (Suhas Daftuar)

	#7216 9572e49 Removed offline testnet DNSSeed ‘alexykot.me’. (tnull)

	#7209 f3ad812 test: don’t override BITCOIND and BITCOINCLI if they’re set (Wladimir J. van der Laan)

	#7226 301f16a Tests: Add more tests to p2p-fullblocktest (Suhas Daftuar)

	#7153 9ef7c54 [Tests] Add mempool_limit.py test (Jonas Schnelli)

	#7170 453c567 tests: Disable Tor interaction (Wladimir J. van der Laan)

	#7229 1ed938b [qa] wallet: Check if maintenance changes the balance (MarcoFalke)

	#7308 d513405 [Tests] Eliminate intermittent failures in sendheaders.py (Suhas Daftuar)

	#7468 947c4ff [rpc-tests] Change solve() to use rehash (Brad Andrews)

Miscellaneous

	#6213 e54ff2f [init] add -blockversion help and extend -upnp help (Diapolo)

	#5975 1fea667 Consensus: Decouple ContextualCheckBlockHeader from checkpoints (Jorge Timón)

	#6061 eba2f06 Separate Consensus::CheckTxInputs and GetSpendHeight in CheckInputs (Jorge Timón)

	#5994 786ed11 detach wallet from miner (Jonas Schnelli)

	#6387 11576a5 [bitcoin-cli] improve error output (Jonas Schnelli)

	#6401 6db53b4 Add BITCOIND_SIGTERM_TIMEOUT to OpenRC init scripts (Florian Schmaus)

	#6430 b01981e doc: add documentation for shared library libbitcoinconsensus (Braydon Fuller)

	#6372 dcc495e Update Linearize tool to support Windows paths; fix variable scope; update README and example configuration (Paul Georgiou)

	#6453 8fe5cce Separate core memory usage computation in core_memusage.h (Pieter Wuille)

	#6149 633fe10 Buffer log messages and explicitly open logs (Adam Weiss)

	#6488 7cbed7f Avoid leaking file descriptors in RegisterLoad (Casey Rodarmor)

	#6497 a2bf40d Make sure LogPrintf strings are line-terminated (Wladimir J. van der Laan)

	#6504 b6fee6b Rationalize currency unit to “BTC” (Ross Nicoll)

	#6507 9bb4dd8 Removed contrib/bitrpc (Casey Rodarmor)

	#6527 41d650f Use unique name for AlertNotify tempfile (Casey Rodarmor)

	#6561 e08a7d9 limitedmap fixes and tests (Casey Rodarmor)

	#6565 a6f2aff Make sure we re-acquire lock if a task throws (Casey Rodarmor)

	#6599 f4d88c4 Make sure LogPrint strings are line-terminated (Ross Nicoll)

	#6630 195942d Replace boost::reverse_lock with our own (Casey Rodarmor)

	#6103 13b8282 Add ZeroMQ notifications (João Barbosa)

	#6692 d5d1d2e devtools: don’t push if signing fails in github-merge (Wladimir J. van der Laan)

	#6728 2b0567b timedata: Prevent warning overkill (Wladimir J. van der Laan)

	#6713 f6ce59c SanitizeString: Allow hypen char (MarcoFalke)

	#5987 4899a04 Bugfix: Fix testnet-in-a-box use case (Luke-Jr)

	#6733 b7d78fd Simple benchmarking framework (Gavin Andresen)

	#6854 a092970 devtools: Add security-check.py (Wladimir J. van der Laan)

	#6790 fa1d252 devtools: add clang-format.py (MarcoFalke)

	#7114 f3d0fdd util: Don’t set strMiscWarning on every exception (Wladimir J. van der Laan)

	#7078 93e0514 uint256::GetCheapHash bigendian compatibility (arowser)

	#7094 34e02e0 Assert now > 0 in GetTime GetTimeMillis GetTimeMicros (Patrick Strateman)

Credits

Thanks to everyone who directly contributed to this release:

	accraze

	Adam Weiss

	Alex Morcos

	Alex van der Peet

	AlSzacrel

	Altoidnerd

	Andriy Voskoboinyk

	antonio-fr

	Arne Brutschy

	Ashley Holman

	Bob McElrath

	Braydon Fuller

	BtcDrak

	Casey Rodarmor

	centaur1

	Chris Kleeschulte

	Christian Decker

	Cory Fields

	crowning-

	daniel

	Daniel Cousens

	Daniel Kraft

	David Hill

	dexX7

	Diego Viola

	Elias Rohrer

	Eric Lombrozo

	Erik Mossberg

	Esteban Ordano

	EthanHeilman

	Florian Schmaus

	Forrest Voight

	Gavin Andresen

	Gregory Maxwell

	Gregory Sanders / instagibbs

	Ian T

	Irving Ruan

	Jacob Welsh

	James O’Beirne

	Jeff Garzik

	Johnathan Corgan

	Jonas Schnelli

	Jonathan Cross

	João Barbosa

	Jorge Timón

	Josh Lehan

	J Ross Nicoll

	kazcw

	Kevin Cooper

	lpescher

	Luke Dashjr

	MarcoFalke

	Mark Friedenbach

	Matt

	Matt Bogosian

	Matt Corallo

	Matt Quinn

	Micha

	Michael

	Michael Ford / fanquake

	Midnight Magic

	Mitchell Cash

	mrbandrews

	mruddy

	Nick

	Patrick Strateman

	Paul Georgiou

	Paul Rabahy

	Pavel Janík / paveljanik

	Pavel Vasin

	Pavol Rusnak

	Peter Josling

	Peter Todd

	Philip Kaufmann

	Pieter Wuille

	ptschip

	randy-waterhouse

	rion

	Ross Nicoll

	Ryan Havar

	Shaul Kfir

	Simon Males

	Stephen

	Suhas Daftuar

	tailsjoin

	Thomas Kerin

	Tom Harding

	tulip

	unsystemizer

	Veres Lajos

	Wladimir J. van der Laan

	xor-freenet

	Zak Wilcox

	zathras-crypto

As well as everyone that helped translating on Transifex [https://www.transifex.com/projects/p/bitcoin/].

 <no title>

 Version 0.3.12 is now available.

Features:

	json-rpc errors return a more standard error object. (thanks to Gavin Andresen)

	json-rpc command line returns exit codes.

	json-rpc “backupwallet” command.

	Recovers and continues if an exception is caused by a message you received. Other nodes shouldn’t be able to cause an exception, and it hasn’t happened before, but if a way is found to cause an exception, this would keep it from being used to stop network nodes.

If you have json-rpc code that checks the contents of the error string, you need to change it to expect error objects of the form {“code”:,”message”:}, which is the standard. See this thread:
http://www.bitcoin.org/smf/index.php?topic=969.0

 <no title>

 Version 0.3.13 is now available. You should upgrade to prevent potential problems with 0/unconfirmed transactions. Note: 0.3.13 prevents problems if you haven’t already spent a 0/unconfirmed transaction, but if that already happened, you need 0.3.13.2.

Changes:

	Don’t count or spend payments until they have 1 confirmation.

	Internal version number from 312 to 31300.

	Only accept transactions sent by IP address if -allowreceivebyip is specified.

	Dropped DB_PRIVATE Berkeley DB flag.

	Fix problem sending the last cent with sub-cent fractional change.

	Auto-detect whether to use 128-bit 4-way SSE2 on Linux.
Gavin Andresen:

	Option -rpcallowip= to accept json-rpc connections from another machine.

	Clean shutdown on SIGTERM on Linux.

Download:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.3.13/

(Thanks Laszlo for the Mac OSX build!)

Note:
The SSE2 auto-detect in the Linux 64-bit version doesn’t work with AMD in 64-bit mode. Please try this instead and let me know if it gets it right:
http://www.bitcoin.org/download/bitcoin-0.3.13.1-specialbuild-linux64.tar.gz

You can still control the SSE2 use manually with -4way and -4way=0.

Version 0.3.13.2 (SVN rev 161) has improvements for the case where you already had 0/unconfirmed transactions that you might have already spent. Here’s a Windows build of it:
http://www.bitcoin.org/download/bitcoin-0.3.13.2-win32-setup.exe

 <no title>

 Version 0.3.14 is now available
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.3.14/

Changes:

	Key pool feature for safer wallet backup
Gavin Andresen:

	TEST network mode with switch -testnet

	Option to use SSL for JSON-RPC connections on unix/osx

	validateaddress RPC command
eurekafag:

	Russian translation

 <no title>

	paytxfee switch is now per KB, so it adds the correct fee for large transactions

	sending avoids using coins with less than 6 confirmations if it can

	BitcoinMiner processes transactions in priority order based on age of dependencies

	make sure generation doesn’t start before block 74000 downloaded

	bugfixes by Dean Gores

	testnet, keypoololdest and paytxfee added to getinfo

 <no title>

 Never released.

 <no title>

 Version 0.3.17 is now available.

Changes:

	new getwork, thanks m0mchil

	added transaction fee setting in UI options menu

	free transaction limits

	sendtoaddress returns transaction id instead of “sent”

	getaccountaddress

 <no title>

 Changes:

	Fixed a wallet.dat compatibility problem if you downgraded from 0.3.17 and then upgraded again

	IsStandard() check to only include known transaction types in blocks

	Jgarzik’s optimisation to speed up the initial block download a little

The main addition in this release is the Accounts-Based JSON-RPC commands that Gavin’s been working on (more details at http://www.bitcoin.org/smf/index.php?topic=1886.0).

	getaccountaddress

	sendfrom

	move

	getbalance

	listtransactions

 <no title>

 There’s more work to do on DoS, but I’m doing a quick build of what I have so far in case it’s needed, before venturing into more complex ideas. The build for this is version 0.3.19.

	Added some DoS controls
As Gavin and I have said clearly before, the software is not at all resistant to DoS attack. This is one improvement, but there are still more ways to attack than I can count.

I’m leaving the -limitfreerelay part as a switch for now and it’s there if you need it.

	Removed “safe mode” alerts
“safe mode” alerts was a temporary measure after the 0.3.9 overflow bug. We can say all we want that users can just run with “-disablesafemode”, but it’s better just not to have it for the sake of appearances. It was never intended as a long term feature. Safe mode can still be triggered by seeing a longer (greater total PoW) invalid block chain.

 <no title>

 Never released or release notes were lost.

 <no title>

 The maxsendbuffer bug (0.3.20.1 clients not being able to download the block chain from other 0.3.20.1 clients) was only going to get
worse as people upgraded, so I cherry-picked the bug fix and created a minor release yesterday.

The Amazon Machine Images I used to do the builds are available:

ami-38a05251 Bitcoin-v0.3.20.2 Mingw (Windows; Administrator password ‘bitcoin development’)
ami-30a05259 Bitcoin_0.3.20.2 Linux32
ami-8abc4ee3 Bitcoin_0.3.20.2 Linux64

(mac build will be done soon)

If you have already downloaded version 0.3.20.1, please either add this to your bitcoin.conf file:

maxsendbuffer=10000
maxreceivebuffer=10000

… or download the new version.

 <no title>

 Please checkout the git integration branch from:

https://github.com/bitcoin/bitcoin

… and help test. The new features that need testing are:

	-nolisten : https://github.com/bitcoin/bitcoin/pull/11

	-rescan : scan block chain for missing wallet transactions

	-printtoconsole : https://github.com/bitcoin/bitcoin/pull/37

	RPC gettransaction details : https://github.com/bitcoin/bitcoin/pull/24

	listtransactions new features : https://github.com/bitcoin/bitcoin/pull/10

Bug fixes that also need testing:

	-maxconnections= : https://github.com/bitcoin/bitcoin/pull/42

	RPC listaccounts minconf : https://github.com/bitcoin/bitcoin/pull/27

	RPC move, add time to output : https://github.com/bitcoin/bitcoin/pull/21

	…and several improvements to –help output.

This needs more testing on Windows! Please drop me a quick private message, email, or IRC message if you are able to do some testing. If you find bugs, please open an issue at:

https://github.com/bitcoin/bitcoin/issues

 <no title>

 Binaries for Bitcoin version 0.3.21 are available at:
https://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.3.21/

Changes and new features from the 0.3.20 release include:

	Universal Plug and Play support. Enable automatic opening of a port for incoming connections by running bitcoin or bitcoind with the - -upnp=1 command line switch or using the Options dialog box.

	Support for full-precision bitcoin amounts. You can now send, and bitcoin will display, bitcoin amounts smaller than 0.01. However, sending fewer than 0.01 bitcoins still requires a 0.01 bitcoin fee (so you can send 1.0001 bitcoins without a fee, but you will be asked to pay a fee if you try to send 0.0001).

	A new method of finding bitcoin nodes to connect with, via DNS A records. Use the -dnsseed option to enable.

For developers, changes to bitcoin’s remote-procedure-call API:

	New rpc command “sendmany” to send bitcoins to more than one address in a single transaction.

	Several bug fixes, including a serious intermittent bug that would sometimes cause bitcoind to stop accepting rpc requests.

	-logtimestamps option, to add a timestamp to each line in debug.log.

	Immature blocks (newly generated, under 120 confirmations) are now shown in listtransactions.

 <no title>

 Download URL: https://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.3.22/

This is largely a bugfix and TX fee schedule release. We also hope to make 0.3.23 a quick release, to fix problems that the network has seen due to explosive growth in the past week.

Notable changes:

	Client will accept and relay TX’s with 0.0005 BTC fee schedule (users still pay 0.01 BTC per kb, until next version)

	Non-standard transactions accepted on testnet

	Source code tree reorganized (prep for autotools build)

	Remove “Generate Coins” option from GUI, and remove 4way SSE miner. Internal reference CPU miner remains available, but users are directed to external miners for best hash production.

	IRC is overflowing. Client now bootstraps to channels #bitcoin00 - #bitcoin99

	DNS names now may be used with -addnode, -connect (requires -dns to enable)

RPC changes:

	‘listtransactions’ adds ‘from’ param, for range queries

	‘move’ may take account balances negative

	‘settxfee’ added, to manually set TX fee

 <no title>

 Win32, Linux, MacOSX and source releases for bitcoin v0.3.23 have been uploaded to
https://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.3.23/

This is another quick bugfix release, trying to deal with the influx of new bitcoin users.

Main items of note:

	P2P connect-to-node logic changed to reduce timeout a bit. The network saw a huge influx of new users, who do not permit incoming connections. This change is a short-term hack, to more quickly hunt for useful P2P connections. Better “leaf node” logic is in the works, but this should let us limp along until then. One may use -upnp to properly forward ports, and help the network.

	Transaction fee reduced to 0.0005 for new transactions

	Client will relay transactions with fees as low as 0.0001 BTC

 <no title>

 Bitcoin v0.3.24 is now available for download at
https://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.3.24/

This is another bug fix release. We had hoped to have wallet encryption ready for release, but more urgent fixes for existing clients were needed – most notably block download problems were getting severe. Wallet encryption is ready for testing at https://github.com/bitcoin/bitcoin/pull/352 for the git-savvy, and hopefully will follow shortly in the next release, v0.4.

Notable fixes in v0.3.24, and the main reasons for this release:

F1) Block downloads were failing or taking unreasonable amounts of time to complete, because the increased size of the block chain was bumping up against some earlier buffer-size DoS limits.

F2) Fix crash caused by loss/lack of network connection.

Notable changes in v0.3.24:

C1) DNS seeding enabled by default.

C2) UPNP enabled by default in the GUI client. The percentage of bitcoin clients that accept incoming connections is quite small, and that is a problem. This should help. bitcoind, and unofficial builds, are unchanged (though we encourage use of “-upnp” to help the network!)

C3) Initial unit testing framework. Bitcoin sorely needs automated tests, and this is a beginning. Contributions welcome.

C4) Internal wallet code cleanup. While invisible to an end user, this change provides the basis for v0.4’s wallet encryption.

 <no title>

 Bitcoin version 0.4.0 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.4.0/

The main feature in this release is wallet private key encryption;
you can set a passphrase that must be entered before sending coins.
See below for more information; if you decide to encrypt your wallet,
WRITE DOWN YOUR PASSPHRASE AND PUT IT IN A SECURE LOCATION. If you
forget or lose your wallet passphrase, you lose your bitcoins.
Previous versions of bitcoin are unable to read encrypted wallets,
and will crash on startup if the wallet is encrypted.

Also note: bitcoin version 0.4 uses a newer version of Berkeley DB
(bdb version 4.8) than previous versions (bdb 4.7). If you upgrade
to version 0.4 and then revert back to an earlier version of bitcoin
the it may be unable to start because bdb 4.7 cannot read bdb 4.8
“log” files.

Notable bug fixes from version 0.3.24:

Fix several bitcoin-becomes-unresponsive bugs due to multithreading
deadlocks.

Optimize database writes for large (lots of inputs) transactions
(fixes a potential denial-of-service attack)

Wallet Encryption

Bitcoin supports native wallet encryption so that people who steal your
wallet file don’t automatically get access to all of your Bitcoins.
In order to enable this feature, choose “Encrypt Wallet” from the
Options menu. You will be prompted to enter a passphrase, which
will be used as the key to encrypt your wallet and will be needed
every time you wish to send Bitcoins. If you lose this passphrase,
you will lose access to spend all of the bitcoins in your wallet,
no one, not even the Bitcoin developers can recover your Bitcoins.
This means you are responsible for your own security, store your
passphrase in a secure location and do not forget it.

Remember that the encryption built into bitcoin only encrypts the
actual keys which are required to send your bitcoins, not the full
wallet. This means that someone who steals your wallet file will
be able to see all the addresses which belong to you, as well as the
relevant transactions, you are only protected from someone spending
your coins.

It is recommended that you backup your wallet file before you
encrypt your wallet. To do this, close the Bitcoin client and
copy the wallet.dat file from ~/.bitcoin/ on Linux, /Users/(user
name)/Application Support/Bitcoin/ on Mac OSX, and %APPDATA%/Bitcoin/
on Windows (that is /Users/(user name)/AppData/Roaming/Bitcoin on
Windows Vista and 7 and /Documents and Settings/(user name)/Application
Data/Bitcoin on Windows XP). Once you have copied that file to a
safe location, reopen the Bitcoin client and Encrypt your wallet.
If everything goes fine, delete the backup and enjoy your encrypted
wallet. Note that once you encrypt your wallet, you will never be
able to go back to a version of the Bitcoin client older than 0.4.

Keep in mind that you are always responsible for your own security.
All it takes is a slightly more advanced wallet-stealing trojan which
installs a keylogger to steal your wallet passphrase as you enter it
in addition to your wallet file and you have lost all your Bitcoins.
Wallet encryption cannot keep you safe if you do not practice
good security, such as running up-to-date antivirus software, only
entering your wallet passphrase in the Bitcoin client and using the
same passphrase only as your wallet passphrase.

See the doc/README file in the bitcoin source for technical details
of wallet encryption.

 <no title>

 Bitcoin version 0.4.1 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.4.1/

This is a bugfix only release based on 0.4.0.

Please report bugs by replying to this forum thread.

MAJOR BUG FIX (CVE-2011-4447)

The wallet encryption feature introduced in Bitcoin version 0.4.0 did not sufficiently secure the private keys. An attacker who
managed to get a copy of your encrypted wallet.dat file might be able to recover some or all of the unencrypted keys and steal the
associated coins.

If you have a previously encrypted wallet.dat, the first time you run wxbitcoin or bitcoind the wallet will be rewritten, Bitcoin will
shut down, and you will be prompted to restart it to run with the new, properly encrypted file.

If you had a previously encrypted wallet.dat that might have been copied or stolen (for example, you backed it up to a public
location) you should send all of your bitcoins to yourself using a new bitcoin address and stop using any previously generated addresses.

Wallets encrypted with this version of Bitcoin are written properly.

Technical note: the encrypted wallet’s ‘keypool’ will be regenerated the first time you request a new bitcoin address; to be certain that the
new private keys are properly backed up you should:

	Run Bitcoin and let it rewrite the wallet.dat file

	Run it again, then ask it for a new bitcoin address.
wxBitcoin: new address visible on main window
bitcoind: run the ‘walletpassphrase’ RPC command to unlock the wallet, then run the ‘getnewaddress’ RPC command.

	If your encrypted wallet.dat may have been copied or stolen, send all of your bitcoins to the new bitcoin address.

	Shut down Bitcoin, then backup the wallet.dat file.
IMPORTANT: be sure to request a new bitcoin address before backing up, so that the ‘keypool’ is regenerated and backed up.

“Security in depth” is always a good idea, so choosing a secure location for the backup and/or encrypting the backup before uploading it is recommended. And as in previous releases, if your machine is infected by malware there are several ways an attacker might steal your bitcoins.

Thanks to Alan Reiner (etotheipi) for finding and reporting this bug.

 <no title>

 Never released or release notes were lost.

 <no title>

 bitcoind version 0.4.3 is now available for download at:
http://luke.dashjr.org/programs/bitcoin/files/bitcoind-0.4.3/ (until Gavin uploads to SourceForge)

This is a bugfix-only release based on 0.4.0.

Please note that the wxBitcoin GUI client is no longer maintained nor supported. If someone would like to step up to maintain this, they should contact Luke-Jr.

Please report bugs for the daemon only using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Stable source code is hosted at Gitorious:
http://gitorious.org/bitcoin/bitcoind-stable/archive-tarball/v0.4.3#.tar.gz

BUG FIXES

Cease locking memory used by non-sensitive information (this caused a huge performance hit on some platforms, especially noticable during initial blockchain download).
Fixed some address-handling deadlocks (client freezes).
No longer accept inbound connections over the internet when Bitcoin is being used with Tor (identity leak).
Use the correct base transaction fee of 0.0005 BTC for accepting transactions into mined blocks (since 0.4.0, it was incorrectly accepting 0.0001 BTC which was only meant to be relayed).
Add new DNS seeds (maintained by Pieter Wuille and Luke Dashjr).

 <no title>

 Bitcoin version 0.4.4 is now available for download at:
http://luke.dashjr.org/programs/bitcoin/files/bitcoind-0.4.4/

This is a bugfix-only release based on 0.4.0.

Please note that the wxBitcoin GUI client is no longer maintained nor supported. If someone would like to step up to maintain this, they should contact Luke-Jr.

Please report bugs for the daemon only using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Stable source code is hosted at Gitorious:
http://gitorious.org/bitcoin/bitcoind-stable/archive-tarball/v0.4.4#.tar.gz

BUG FIXES

Limit the number of orphan transactions stored in memory, to prevent a potential denial-of-service attack by flooding orphan transactions. Also never store invalid transactions at all.
Fix possible buffer overflow on systems with very long application data paths. This is not exploitable.
Resolved multiple bugs preventing long-term unlocking of encrypted wallets (issue #922).
Only send local IP in “version” messages if it is globally routable (ie, not private), and try to get such an IP from UPnP if applicable.
Reannounce UPnP port forwards every 20 minutes, to workaround routers expiring old entries, and allow the -upnp option to override any stored setting.
Various memory leaks and potential null pointer deferences have been
fixed.
Several shutdown issues have been fixed.
Check that keys stored in the wallet are valid at startup, and if not,
report corruption.
Various build fixes.
If no password is specified to bitcoind, recommend a secure password.
Update hard-coded fallback seed nodes, choosing recent ones with long uptime and versions at least 0.4.0.
Add checkpoint at block 168,000.

 <no title>

 Never released or release notes were lost.

 <no title>

 bitcoind version 0.4.6 is now available for download at:
Windows: installer | zip (sig)
Source: tar.gz
bitcoind and Bitcoin-Qt version 0.6.0.7 are also tagged in git, but it is recommended to upgrade to 0.6.1.

These are bugfix-only releases.

Please report bugs by replying to this forum thread. Note that the 0.4.x wxBitcoin GUI client is no longer maintained nor supported. If someone would like to step up to maintain this, they should contact Luke-Jr.

BUG FIXES

Version 0.6.0 allowed importing invalid “private keys”, which would be unspendable; 0.6.0.7 will now verify the private key is valid, and refuse to import an invalid one
Verify status of encrypt/decrypt calls to detect failed padding
Check blocks for duplicate transactions earlier. Fixes #1167
Upgrade Windows builds to OpenSSL 1.0.1b
Set label when selecting an address that already has a label. Fixes #1080 (Bitcoin-Qt)
JSON-RPC listtransactions’s from/count handling is now fixed
Optimize and fix multithreaded access, when checking whether we already know about transactions
Fix potential networking deadlock
Proper support for Growl 1.3 notifications
Display an error, rather than crashing, if encoding a QR Code failed (0.6.0.7)
Don’t erroneously set “Display addresses” for users who haven’t explicitly enabled it (Bitcoin-Qt)
Some non-ASCII input in JSON-RPC expecting hexadecimal may have been misinterpreted rather than rejected
Missing error condition checking added
Do not show green tick unless all known blocks are downloaded. Fixes #921 (Bitcoin-Qt)
Increase time ago of last block for “up to date” status from 30 to 90 minutes
Show a message box when runaway exception happens (Bitcoin-Qt)
Use a messagebox to display the error when -server is provided without providing a rpc password
Show error message instead of exception crash when unable to bind RPC port (Bitcoin-Qt)
Correct sign message bitcoin address tooltip. Fixes #1050 (Bitcoin-Qt)
Removed “(no label)” from QR Code dialog titlebar if we have no label (0.6.0.7)
Removed an ugly line break in tooltip for mature transactions (0.6.0.7)
Add missing tooltip and key shortcut in settings dialog (part of #1088) (Bitcoin-Qt)
Work around issue in boost::program_options that prevents from compiling in clang
Fixed bugs occurring only on platforms with unsigned characters (such as ARM).
Rename make_windows_icon.py to .sh as it is a shell script. Fixes #1099 (Bitcoin-Qt)
Various trivial internal corrections to types used for counting/size loops and warnings

 <no title>

 Bitcoin version 0.5.0 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.5.0/

The major change for this release is a completely new graphical interface that uses the Qt user interface toolkit.

This release include German, Spanish, Spanish-Castilian, Norwegian and Dutch translations. More translations are welcome; join the project at Transifex if you can help:
https://www.transifex.net/projects/p/bitcoin/

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

For Ubuntu users, there is a new ppa maintained by Matt Corallo which you can add to your system so that it will automatically keep bitcoin up-to-date. Just type “sudo apt-add-repository ppa:bitcoin/bitcoin” in your terminal, then install the bitcoin-qt package.

MAJOR BUG FIX (CVE-2011-4447)

The wallet encryption feature introduced in Bitcoin version 0.4.0 did not sufficiently secure the private keys. An attacker who
managed to get a copy of your encrypted wallet.dat file might be able to recover some or all of the unencrypted keys and steal the
associated coins.

If you have a previously encrypted wallet.dat, the first time you run bitcoin-qt or bitcoind the wallet will be rewritten, Bitcoin will
shut down, and you will be prompted to restart it to run with the new, properly encrypted file.

If you had a previously encrypted wallet.dat that might have been copied or stolen (for example, you backed it up to a public
location) you should send all of your bitcoins to yourself using a new bitcoin address and stop using any previously generated addresses.

Wallets encrypted with this version of Bitcoin are written properly.

Technical note: the encrypted wallet’s ‘keypool’ will be regenerated the first time you request a new bitcoin address; to be certain that the
new private keys are properly backed up you should:

	Run Bitcoin and let it rewrite the wallet.dat file

	Run it again, then ask it for a new bitcoin address.
Bitcoin-Qt: Address Book, then New Address…
bitcoind: run the ‘walletpassphrase’ RPC command to unlock the wallet, then run the ‘getnewaddress’ RPC command.

	If your encrypted wallet.dat may have been copied or stolen, send all of your bitcoins to the new bitcoin address.

	Shut down Bitcoin, then backup the wallet.dat file.
IMPORTANT: be sure to request a new bitcoin address before backing up, so that the ‘keypool’ is regenerated and backed up.

“Security in depth” is always a good idea, so choosing a secure location for the backup and/or encrypting the backup before uploading it is recommended. And as in previous releases, if your machine is infected by malware there are several ways an attacker might steal your bitcoins.

Thanks to Alan Reiner (etotheipi) for finding and reporting this bug.

MAJOR GUI CHANGES

“Splash” graphics at startup that show address/wallet/blockchain loading progress.

“Synchronizing with network” progress bar to show block-chain download progress.

Icons at the bottom of the window that show how well connected you are to the network, with tooltips to display details.

Drag and drop support for bitcoin: URIs on web pages.

Export transactions as a .csv file.

Many other GUI improvements, large and small.

RPC CHANGES

getmemorypool : new RPC command, provides everything needed to construct a block with a custom generation transaction and submit a solution

listsinceblock : new RPC command, list transactions since given block

signmessage/verifymessage : new RPC commands to sign a message with one of your private keys or verify that a message signed by the private key associated with a bitcoin address.

GENERAL CHANGES

Faster initial block download.

 <no title>

 Bitcoin version 0.5.1 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.5.1/

This is a bugfix-only release.

This release includes 13 translations, including 5 new translations:
Italian, Hungarian, Ukranian, Portuguese (Brazilian) and Simplified Chinese.
More translations are welcome; join the project at Transifex if you can help:
https://www.transifex.net/projects/p/bitcoin/

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Project source code is hosted at github; we are no longer
distributing .tar.gz files here, you can get them
directly from github:
https://github.com/bitcoin/bitcoin/tarball/v0.5.1 # .tar.gz
https://github.com/bitcoin/bitcoin/zipball/v0.5.1 # .zip

For Ubuntu users, there is a new ppa maintained by Matt Corallo which
you can add to your system so that it will automatically keep
bitcoin up-to-date. Just type
sudo apt-add-repository ppa:bitcoin/bitcoin
in your terminal, then install the bitcoin-qt package.

BUG FIXES

Re-enable SSL support for the JSON-RPC interface (it was unintentionally
disabled for the 0.5.0 release binaries).

The code that finds peers via “dns seeds” no longer stops bitcoin startup
if one of the dns seed machines is down.

Tooltips on the transaction list view were rendering incorrectly (as black boxes
or with a transparent background).

Prevent a denial-of-service attack involving flooding a bitcoin node with
orphan blocks.

The wallet passphrase dialog now warns you if the caps lock key was pressed.

Improved searching in addresses and labels in bitcoin-qt.

 <no title>

 Bitcoin version 0.5.2 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.5.2/

This is a bugfix-only release based on 0.5.1.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Stable source code is hosted at Gitorious:
http://gitorious.org/bitcoin/bitcoind-stable/archive-tarball/v0.5.2#.tar.gz

BUG FIXES

Check all transactions in blocks after the last checkpoint (0.5.0 and 0.5.1 skipped checking ECDSA signatures during initial blockchain download).
Cease locking memory used by non-sensitive information (this caused a huge performance hit on some platforms, especially noticable during initial blockchain download; this was
not a security vulnerability).
Fixed some address-handling deadlocks (client freezes).
No longer accept inbound connections over the internet when Bitcoin is being used with Tor (identity leak).
Re-enable SSL support for the JSON-RPC interface (it was unintentionally disabled for the 0.5.0 and 0.5.1 release Linux binaries).
Use the correct base transaction fee of 0.0005 BTC for accepting transactions into mined blocks (since 0.4.0, it was incorrectly accepting 0.0001 BTC which was only meant to be relayed).
Don’t show “IP” for transactions which are not necessarily IP transactions.
Add new DNS seeds (maintained by Pieter Wuille and Luke Dashjr).

 <no title>

 Bitcoin version 0.5.3 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.5.3/

This is a bugfix-only release based on 0.5.1.
It also includes a few protocol updates.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Stable source code is hosted at Gitorious:
http://gitorious.org/bitcoin/bitcoind-stable/archive-tarball/v0.5.3#.tar.gz

PROTOCOL UPDATES

BIP 30: Introduce a new network rule: “a block is not valid if it contains a transaction whose hash already exists in the block chain, unless all that transaction’s outputs were already spent before said block” beginning on March 15, 2012, 00:00 UTC.
On testnet, allow mining of min-difficulty blocks if 20 minutes have gone by without mining a regular-difficulty block. This is to make testing Bitcoin easier, and will not affect normal mode.

BUG FIXES

Limit the number of orphan transactions stored in memory, to prevent a potential denial-of-service attack by flooding orphan transactions. Also never store invalid transactions at all.
Fix possible buffer overflow on systems with very long application data paths. This is not exploitable.
Resolved multiple bugs preventing long-term unlocking of encrypted wallets
(issue #922).
Only send local IP in “version” messages if it is globally routable (ie, not private), and try to get such an IP from UPnP if applicable.
Reannounce UPnP port forwards every 20 minutes, to workaround routers expiring old entries, and allow the -upnp option to override any stored setting.
Skip splash screen when -min is used, and fix Minimize to Tray function.
Do not blank “label” in Bitcoin-Qt “Send” tab, if the user has already entered something.
Correct various labels and messages.
Various memory leaks and potential null pointer deferences have been fixed.
Handle invalid Bitcoin URIs using “bitcoin://” instead of “bitcoin:”.
Several shutdown issues have been fixed.
Revert to “global progress indication”, as starting from zero every time was considered too confusing for many users.
Check that keys stored in the wallet are valid at startup, and if not, report corruption.
Enable accessible widgets on Windows, so that people with screen readers such as NVDA can make sense of it.
Various build fixes.
If no password is specified to bitcoind, recommend a secure password.
Automatically focus and scroll to new “Send coins” entries in Bitcoin-Qt.
Show a message box for –help on Windows, for Bitcoin-Qt.
Add missing “About Qt” menu option to show built-in Qt About dialog.
Don’t show “-daemon” as an option for Bitcoin-Qt, since it isn’t available.
Update hard-coded fallback seed nodes, choosing recent ones with long uptime and versions at least 0.4.0.
Add checkpoint at block 168,000.

 <no title>

 Bitcoin version 0.5.4 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.5.4/
NOTE: 0.5.4rc3 is being renamed to 0.5.4 final with no changes.

This is a bugfix-only release in the 0.5.x series, plus a few protocol updates.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Stable source code is hosted at Gitorious:
http://gitorious.org/bitcoin/bitcoind-stable/archive-tarball/v0.5.4#.tar.gz

PROTOCOL UPDATES

BIP 16: Special-case “pay to script hash” logic to enable minimal validation of new transactions.
Support for validating message signatures produced with compressed public keys.

BUG FIXES

Build with thread-safe MingW libraries for Windows, fixing a dangerous memory corruption scenario when exceptions are thrown.
Fix broken testnet mining.
Stop excess inventory relay during initial block download.
When disconnecting a node, clear the received buffer so that we do not process any already received messages.
Yet another attempt at implementing “minimize to tray” that works on all operating systems.
Fix Bitcoin-Qt notifications under Growl 1.3.
Increase required age of Bitcoin-Qt’s “not up to date” status from 30 to 90 minutes.
Implemented missing verifications that led to crash on entering some wrong passphrases for encrypted wallets.
Fix default filename suffixes in GNOME save dialog.
Make the “Send coins” tab use the configured unit type, even on the first attempt.
Print detailed wallet loading errors to debug.log when it is corrupt.
Allocate exactly the amount of space needed for signing transactions, instead of a fixed 10k buffer.
Workaround for improbable memory access violation.
Check wallet’s minimum version before trying to load it.
Remove wxBitcoin properly when installing Bitcoin-Qt over it. (Windows)
Detail reorganization information better in debug log.
Use a messagebox to display the error when -server is provided without configuring a RPC password.
Testing suite build now honours provided CXXFLAGS.
Removed an extraneous line-break in mature transaction tooltips.
Fix some grammatical errors in translation process documentation.

 <no title>

 bitcoind and Bitcoin-Qt version 0.5.5 are now available for download at:
Windows: installer | zip (sig)
Source: tar.gz
bitcoind and Bitcoin-Qt version 0.6.0.7 are also tagged in git, but it is recommended to upgrade to 0.6.1.

These are bugfix-only releases.

Please report bugs by replying to this forum thread. Note that the 0.4.x wxBitcoin GUI client is no longer maintained nor supported. If someone would like to step up to maintain this, they should contact Luke-Jr.

BUG FIXES

Version 0.6.0 allowed importing invalid “private keys”, which would be unspendable; 0.6.0.7 will now verify the private key is valid, and refuse to import an invalid one
Verify status of encrypt/decrypt calls to detect failed padding
Check blocks for duplicate transactions earlier. Fixes #1167
Upgrade Windows builds to OpenSSL 1.0.1b
Set label when selecting an address that already has a label. Fixes #1080 (Bitcoin-Qt)
JSON-RPC listtransactions’s from/count handling is now fixed
Optimize and fix multithreaded access, when checking whether we already know about transactions
Fix potential networking deadlock
Proper support for Growl 1.3 notifications
Display an error, rather than crashing, if encoding a QR Code failed (0.6.0.7)
Don’t erroneously set “Display addresses” for users who haven’t explicitly enabled it (Bitcoin-Qt)
Some non-ASCII input in JSON-RPC expecting hexadecimal may have been misinterpreted rather than rejected
Missing error condition checking added
Do not show green tick unless all known blocks are downloaded. Fixes #921 (Bitcoin-Qt)
Increase time ago of last block for “up to date” status from 30 to 90 minutes
Show a message box when runaway exception happens (Bitcoin-Qt)
Use a messagebox to display the error when -server is provided without providing a rpc password
Show error message instead of exception crash when unable to bind RPC port (Bitcoin-Qt)
Correct sign message bitcoin address tooltip. Fixes #1050 (Bitcoin-Qt)
Removed “(no label)” from QR Code dialog titlebar if we have no label (0.6.0.7)
Removed an ugly line break in tooltip for mature transactions (0.6.0.7)
Add missing tooltip and key shortcut in settings dialog (part of #1088) (Bitcoin-Qt)
Work around issue in boost::program_options that prevents from compiling in clang
Fixed bugs occurring only on platforms with unsigned characters (such as ARM).
Rename make_windows_icon.py to .sh as it is a shell script. Fixes #1099 (Bitcoin-Qt)
Various trivial internal corrections to types used for counting/size loops and warnings

 <no title>

 Bitcoin version 0.6.0 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.6.0/test/

This release includes more than 20 language localizations.
More translations are welcome; join the
project at Transifex to help:
https://www.transifex.net/projects/p/bitcoin/

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Project source code is hosted at github; we are no longer
distributing .tar.gz files here, you can get them
directly from github:
https://github.com/bitcoin/bitcoin/tarball/v0.6.0 # .tar.gz
https://github.com/bitcoin/bitcoin/zipball/v0.6.0 # .zip

For Ubuntu users, there is a ppa maintained by Matt Corallo which
you can add to your system so that it will automatically keep
bitcoin up-to-date. Just type
sudo apt-add-repository ppa:bitcoin/bitcoin
in your terminal, then install the bitcoin-qt package.

KNOWN ISSUES

Shutting down while synchronizing with the network
(downloading the blockchain) can take more than a minute,
because database writes are queued to speed up download
time.

NEW FEATURES SINCE BITCOIN VERSION 0.5

Initial network synchronization should be much faster
(one or two hours on a typical machine instead of ten or more
hours).

Backup Wallet menu option.

Bitcoin-Qt can display and save QR codes for sending
and receiving addresses.

New context menu on addresses to copy/edit/delete them.

New Sign Message dialog that allows you to prove that you
own a bitcoin address by creating a digital
signature.

New wallets created with this version will
use 33-byte ‘compressed’ public keys instead of
65-byte public keys, resulting in smaller
transactions and less traffic on the bitcoin
network. The shorter keys are already supported
by the network but wallet.dat files containing
short keys are not compatible with earlier
versions of Bitcoin-Qt/bitcoind.

New command-line argument -blocknotify=
that will spawn a shell process to run
when a new block is accepted.

 <no title>

 Never released

 <no title>

 Bitcoin version 0.6.2 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.6.2/

This is a bug-fix and code-cleanup release, with no major new features.

Please report bugs using the github issue tracker at:
https://github.com/bitcoin/bitcoin/issues

NOTABLE CHANGES

Much faster shutdowns. However, the blkindex.dat file is no longer
portable to different data directories by default. If you need a
portable blkindex.dat file then run with the new -detachdb=1 option
or the “Detach databases at shutdown” GUI preference.

Fixed https://github.com/bitcoin/bitcoin/issues/1065, a bug that
could cause long-running nodes to crash.

Mac and Windows binaries are compiled against OpenSSL 1.0.1b (Linux
binaries are dynamically linked to the version of OpenSSL on the system).

CHANGE SUMMARY

Use ‘git shortlog –no-merges v0.6.0..’ for a summary of this release.

Source codebase changes:

	Many source code cleanups and warnings fixes. Close to building with -Wall

	Locking overhaul, and several minor locking fixes

	Several source code portability fixes, e.g. FreeBSD

JSON-RPC interface changes:

	addmultisigaddress enabled for mainnet (previously only enabled for testnet)

Network protocol changes:

	protocol version 60001

	added nonce value to “ping” message (BIP 31)

	added new “pong” message (BIP 31)

Backend storage changes:

	Less redundant database flushing, especially during initial block download

	Shutdown improvements (see above)

Qt user interface:

	minor URI handling improvements

	progressbar improvements

	error handling improvements (show message box rather than console exception,
etc.)

	by popular request, make 4th bar of connection icon green

 <no title>

 Bitcoin version 0.6.3 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.6.3/

This is a bug-fix release, with no new features.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

CHANGE SUMMARY

Fixed a serious denial-of-service attack that could cause the
bitcoin process to become unresponsive. Thanks to Sergio Lerner
for finding and responsibly reporting the problem. (CVE-2012-3789)

Optimized the process of checking transaction signatures, to
speed up processing of new block messages and make propagating
blocks across the network faster.

Fixed an obscure bug that could cause the bitcoin process to get
stuck on an invalid block-chain, if the invalid chain was
hundreds of blocks long.

Bitcoin-Qt no longer automatically selects the first address
in the address book (Issue #1384).

Fixed minimize-to-dock behavior of Bitcoin-Qt on the Mac.

Added a block checkpoint at block 185,333 to speed up initial
blockchain download.

 <no title>

 Bitcoin version 0.7.0 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.7.0/

We recommend that everybody running prior versions of bitcoind/Bitcoin-Qt
upgrade to this release, except for users running Mac OSX 10.5.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Project source code is hosted at github; you can get
source-only tarballs/zipballs directly from there:
https://github.com/bitcoin/bitcoin/tarball/v0.7.0 # .tar.gz
https://github.com/bitcoin/bitcoin/zipball/v0.7.0 # .zip

Ubuntu Linux users can use the “Personal Package Archive” (PPA)
maintained by Matt Corallo to automatically keep
bitcoin up-to-date. Just type
sudo apt-add-repository ppa:bitcoin/bitcoin
sudo apt-get update
in your terminal, then install the bitcoin-qt package:
sudo apt-get install bitcoin-qt

How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
Code:
/Applications/Bitcoin-Qt
(on Mac) or
Code:
bitcoind/bitcoin-qt
(on Linux).

If you were running on Linux with a version that might have been compiled
with a different version of Berkeley DB (for example, if you were using the
PPA and are switching to the binary release), then run the old version again
with the -detachdb argument and shut it down; if you do not, then the new
version will not be able to read the database files and will exit with an error.

Incompatible Changes

	Replaced the ‘getmemorypool’ RPC command with ‘getblocktemplate/submitblock’
and ‘getrawmempool’ commands.

	Remove deprecated RPC ‘getblocknumber’

Bitcoin Improvement Proposals implemented

BIP 22 - ‘getblocktemplate’, ‘submitblock’ RPCs
BIP 34 - block version 2, height in coinbase
BIP 35 - ‘mempool’ message, extended ‘getdata’ message behavior

Core bitcoin handling and blockchain database

	Reduced CPU usage, by eliminating some redundant hash calculations

	Cache signature verifications, to eliminate redundant signature checks

	Transactions with zero-value outputs are considered non-standard

	Mining: when creating new blocks, sort ‘paid’ area by fee-per-kb

	Database: better validation of on-disk stored data

	Database: minor optimizations and reliability improvements

	-loadblock=FILE will import an external block file

	Additional DoS (denial-of-service) prevention measures

	New blockchain checkpoint at block 193,000

JSON-RPC API

	Internal HTTP server is now thread-per-connection, rather than
a single-threaded queue that would stall on network I/O.

	Internal HTTP server supports HTTP/1.1, pipelined requests and
connection keep-alive.

	Support JSON-RPC 2.0 batches, to encapsulate multiple JSON-RPC requests
within a single HTTP request.

	IPv6 support

	Added raw transaction API. See https://gist.github.com/2839617

	Added ‘getrawmempool’, to list contents of TX memory pool

	Added ‘getpeerinfo’, to list data about each connected network peer

	Added ‘listaddressgroupings’ for better coin control

	Rework getblock call.

	Remove deprecated RPC ‘getblocknumber’

	Remove superceded RPC ‘getmemorypool’ (see BIP 22, above)

	listtransactions output now displays “smart” times for transactions,
and ‘blocktime’ and ‘timereceived’ fields were added

P2P networking

	IPv6 support

	Tor hidden service support (see doc/Tor.txt)

	Attempts to fix “stuck blockchain download” problems

	Replace BDB database “addr.dat” with internally-managed “peers.dat”
file containing peer address data.

	Lower default send buffer from 10MB to 1MB

	proxy: SOCKS5 by default

	Support connecting by hostnames passed to proxy

	Add -seednode connections, and use this instead of DNS seeds when proxied

	Added -externalip and -discover

	Add -onlynet to connect only to a given network (IPv4, IPv6, or Tor)

	Separate listening sockets, -bind=

 KNOWN ISSUES

 Bitcoin version 0.7.1 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.7.1/

This is a bug-fix minor release.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Project source code is hosted at github; you can get
source-only tarballs/zipballs directly from there:
https://github.com/bitcoin/bitcoin/tarball/v0.7.1 # .tar.gz
https://github.com/bitcoin/bitcoin/zipball/v0.7.1 # .zip

Ubuntu Linux users can use the “Personal Package Archive” (PPA)
maintained by Matt Corallo to automatically keep
up-to-date. Just type:
sudo apt-add-repository ppa:bitcoin/bitcoin
sudo apt-get update
in your terminal, then install the bitcoin-qt package:
sudo apt-get install bitcoin-qt

KNOWN ISSUES

Mac OSX 10.5 is no longer supported.

How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you were running on Linux with a version that might have been compiled
with a different version of Berkeley DB (for example, if you were using an
Ubuntu PPA version), then run the old version again with the -detachdb
argument and shut it down; if you do not, then the new version will not
be able to read the database files and will exit with an error.

Explanation of -detachdb (and the new “stop true” RPC command):
The Berkeley DB database library stores data in both “.dat” and
“log” files, so the database is always in a consistent state,
even in case of power failure or other sudden shutdown. The
format of the “.dat” files is portable between different
versions of Berkeley DB, but the “log” files are not– even minor
version differences may have incompatible “log” files. The
-detachdb option moves any pending changes from the “log” files
to the “blkindex.dat” file for maximum compatibility, but makes
shutdown much slower. Note that the “wallet.dat” file is always
detached, and versions prior to 0.6.0 detached all databases
at shutdown.

New features

	Added a boolean argument to the RPC ‘stop’ command, if true sets
-detachdb to create standalone database .dat files before shutting down.

	-salvagewallet command-line option, which moves any existing wallet.dat
to wallet.{timestamp}.dat and then attempts to salvage public/private
keys and master encryption keys (if the wallet is encrypted) into
a new wallet.dat. This should only be used if your wallet becomes
corrupted, and is not intended to replace regular wallet backups.

	Import $DataDir/bootstrap.dat automatically, if it exists.

Dependency changes

	Qt 4.8.2 for Windows builds

	openssl 1.0.1c

Bug fixes

	Clicking on a bitcoin: URI on Windows should now launch Bitcoin-Qt properly.

	When running -testnet, use RPC port 18332 by default.

	Better detection and handling of corrupt wallet.dat and blkindex.dat files.
Previous versions would crash with a DB_RUNRECOVERY exception, this
version detects most problems and tells you how to recover if it
cannot recover itself.

	Fixed an uninitialized variable bug that could cause transactions to
be reported out of order.

	Fixed a bug that could cause occasional crashes on exit.

	Warn the user that they need to create fresh wallet backups after they
encrypt their wallet.

Thanks to everybody who contributed to this release:

Gavin Andresen
Jeff Garzik
Luke Dashjr
Mark Friedenbach
Matt Corallo
Philip Kaufmann
Pieter Wuille
Rune K. Svendsen
Virgil Dupras
Wladimir J. van der Laan
fanquake
kjj2
xanatos

 How to Upgrade

 Bitcoin version 0.7.2 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.7.2

This is a bug-fix minor release.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you were running on Linux with a version that might have been compiled
with a different version of Berkeley DB (for example, if you were using an
Ubuntu PPA version), then run the old version again with the -detachdb
argument and shut it down; if you do not, then the new version will not
be able to read the database files and will exit with an error.

Explanation of -detachdb (and the new “stop true” RPC command):
The Berkeley DB database library stores data in both “.dat” and
“log” files, so the database is always in a consistent state,
even in case of power failure or other sudden shutdown. The
format of the “.dat” files is portable between different
versions of Berkeley DB, but the “log” files are not– even minor
version differences may have incompatible “log” files. The
-detachdb option moves any pending changes from the “log” files
to the “blkindex.dat” file for maximum compatibility, but makes
shutdown much slower. Note that the “wallet.dat” file is always
detached, and versions prior to 0.6.0 detached all databases
at shutdown.

Bug fixes

	Prevent RPC ‘move’ from deadlocking. This was caused by trying to lock the
database twice.

	Fix use-after-free problems in initialization and shutdown, the latter of
which caused Bitcoin-Qt to crash on Windows when exiting.

	Correct library linking so building on Windows natively works.

	Avoid a race condition and out-of-bounds read in block creation/mining code.

	Improve platform compatibility quirks, including fix for 100% CPU utilization
on FreeBSD 9.

	A few minor corrections to error handling, and updated translations.

	OSX 10.5 supported again

Thanks to everybody who contributed to this release:

Alex
dansmith
Gavin Andresen
Gregory Maxwell
Jeff Garzik
Luke Dashjr
Philip Kaufmann
Pieter Wuille
Wladimir J. van der Laan
grimd34th

 How to Upgrade

 Bitcoin-Qt version 0.8.0 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.8.0/

This is a major release designed to improve performance and handle the
increasing volume of transactions on the network.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

The first time you run after the upgrade a re-indexing process will be
started that will take anywhere from 30 minutes to several hours,
depending on the speed of your machine.

Incompatible Changes

This release no longer maintains a full index of historical transaction ids
by default, so looking up an arbitrary transaction using the getrawtransaction
RPC call will not work. If you need that functionality, you must run once
with -txindex=1 -reindex=1 to rebuild block-chain indices (see below for more
details).

Improvements

Mac and Windows binaries are signed with certificates owned by the Bitcoin
Foundation, to be compatible with the new security features in OSX 10.8 and
Windows 8.

LevelDB, a fast, open-source, non-relational database from Google, is
now used to store transaction and block indices. LevelDB works much better
on machines with slow I/O and is faster in general. Berkeley DB is now only
used for the wallet.dat file (public and private wallet keys and transactions
relevant to you).

Pieter Wuille implemented many optimizations to the way transactions are
verified, so a running, synchronized node uses less working memory and does
much less I/O. He also implemented parallel signature checking, so if you
have a multi-CPU machine all CPUs will be used to verify transactions.

New Features

“Bloom filter” support in the network protocol for sending only relevant transactions to
lightweight clients.

contrib/verifysfbinaries is a shell-script to verify that the binary downloads
at sourceforge have not been tampered with. If you are able, you can help make
everybody’s downloads more secure by running this occasionally to check PGP
signatures against download file checksums.

contrib/spendfrom is a python-language command-line utility that demonstrates
how to use the “raw transactions” JSON-RPC api to send coins received from particular
addresses (also known as “coin control”).

New/changed settings (command-line or bitcoin.conf file)

dbcache : controls LevelDB memory usage.

par : controls how many threads to use to validate transactions. Defaults to the number
of CPUs on your machine, use -par=1 to limit to a single CPU.

txindex : maintains an extra index of old, spent transaction ids so they will be found
by the getrawtransaction JSON-RPC method.

reindex : rebuild block and transaction indices from the downloaded block data.

New JSON-RPC API Features

lockunspent / listlockunspent allow locking transaction outputs for a period of time so
they will not be spent by other processes that might be accessing the same wallet.

addnode / getaddednodeinfo methods, to connect to specific peers without restarting.

importprivkey now takes an optional boolean parameter (default true) to control whether
or not to rescan the blockchain for transactions after importing a new private key.

Important Bug Fixes

Privacy leak: the position of the “change” output in most transactions was not being
properly randomized, making network analysis of the transaction graph to identify
users’ wallets easier.

Zero-confirmation transaction vulnerability: accepting zero-confirmation transactions
(transactions that have not yet been included in a block) from somebody you do not
trust is still not recommended, because there will always be ways for attackers to
double-spend zero-confirmation transactions. However, this release includes a bug
fix that makes it a little bit more difficult for attackers to double-spend a
certain type (“lockTime in the future”) of zero-confirmation transaction.

Dependency Changes

Qt 4.8.3 (compiling against older versions of Qt 4 should continue to work)

Thanks to everybody who contributed to this release:

Alexander Kjeldaas
Andrey Alekseenko
Arnav Singh
Christian von Roques
Eric Lombrozo
Forrest Voight
Gavin Andresen
Gregory Maxwell
Jeff Garzik
Luke Dashjr
Matt Corallo
Mike Cassano
Mike Hearn
Peter Todd
Philip Kaufmann
Pieter Wuille
Richard Schwab
Robert Backhaus
Rune K. Svendsen
Sergio Demian Lerner
Wladimir J. van der Laan
burger2
default
fanquake
grimd34th
justmoon
redshark1802
tucenaber
xanatos

 How to Upgrade

 Bitcoin-Qt/bitcoind version 0.8.1 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.8.1/

This is a maintenance release that adds a new network rule to avoid
a chain-forking incompatibility with versions 0.7.2 and earlier.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you
run 0.8.1 your blockchain files will be re-indexed, which will take
anywhere from 30 minutes to several hours, depending on the speed of
your machine.

 <no title>

 Bitcoin-Qt version 0.8.2 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.8.2/

This is a maintenance release that fixes many bugs and includes
a few small new features.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you
run 0.8.2 your blockchain files will be re-indexed, which will take
anywhere from 30 minutes to several hours, depending on the speed of
your machine.

0.8.2 Release notes

Fee Policy changes

The default fee for low-priority transactions is lowered from 0.0005 BTC
(for each 1,000 bytes in the transaction; an average transaction is
about 500 bytes) to 0.0001 BTC.

Payments (transaction outputs) of 0.543 times the minimum relay fee
(0.00005430 BTC) are now considered ‘non-standard’, because storing them
costs the network more than they are worth and spending them will usually
cost their owner more in transaction fees than they are worth.

Non-standard transactions are not relayed across the network, are not included
in blocks by most miners, and will not show up in your wallet until they are
included in a block.

The default fee policy can be overridden using the -mintxfee and -minrelaytxfee
command-line options, but note that we intend to replace the hard-coded fees
with code that automatically calculates and suggests appropriate fees in the
0.9 release and note that if you set a fee policy significantly different from
the rest of the network your transactions may never confirm.

Bitcoin-Qt changes

	New icon and splash screen

	Improve reporting of synchronization process

	Remove hardcoded fee recommendations

	Improve metadata of executable on MacOSX and Windows

	Move export button to individual tabs instead of toolbar

	Add “send coins” command to context menu in address book

	Add “copy txid” command to copy transaction IDs from transaction overview

	Save & restore window size and position when showing & hiding window

	New translations: Arabic (ar), Bosnian (bs), Catalan (ca), Welsh (cy),
Esperanto (eo), Interlingua (la), Latvian (lv) and many improvements
to current translations

MacOSX:

	OSX support for click-to-pay (bitcoin:) links

	Fix GUI disappearing problem on MacOSX (issue #1522)

Linux/Unix:

	Copy addresses to middle-mouse-button clipboard

Command-line options

	-walletnotify will call a command on receiving transactions that affect the wallet.

	-alertnotify will call a command on receiving an alert from the network.

	-par now takes a negative number, to leave a certain amount of cores free.

JSON-RPC API changes

	fixed a getblocktemplate bug that caused excessive CPU creating blocks.

	listunspent now lists account and address information.

	getinfo now also returns the time adjustment estimated from your peers.

	getpeerinfo now returns bytessent, bytesrecv and syncnode.

	gettxoutsetinfo returns statistics about the unspent transaction output database.

	gettxout returns information about a specific unspent transaction output.

Networking changes

	Significant changes to the networking code, reducing latency and memory consumption.

	Avoid initial block download stalling.

	Remove IRC seeding support.

	Performance tweaks.

	Added testnet DNS seeds.

Wallet compatibility/rescuing

	Cases where wallets cannot be opened in another version/installation should be reduced.

	-salvagewallet now works for encrypted wallets.

Known Bugs

	Entering the ‘getblocktemplate’ or ‘getwork’ RPC commands into the Bitcoin-Qt debug
console will cause Bitcoin-Qt to crash. Run Bitcoin-Qt with the -server command-line
option to workaround.

Thanks to everybody who contributed to the 0.8.2 release!

APerson241
Andrew Poelstra
Calvin Owens
Chuck LeDuc Díaz
Colin Dean
David Griffith
David Serrano
Eric Lombrozo
Gavin Andresen
Gregory Maxwell
Jeff Garzik
Jonas Schnelli
Larry Gilbert
Luke Dashjr
Matt Corallo
Michael Ford
Mike Hearn
Patrick Brown
Peter Todd
Philip Kaufmann
Pieter Wuille
Richard Schwab
Roman Mindalev
Scott Howard
Tariq Bashir
Warren Togami
Wladimir J. van der Laan
freewil
gladoscc
kjj2
mb300sd
super3

 <no title>

 Bitcoin-Qt version 0.8.3 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.8.3/

This is a maintenance release to fix a denial-of-service attack that
can cause nodes to crash.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

0.8.3 Release notes

Truncate over-size messages to prevent a memory exhaustion attack.

Fix a regression that causes excessive re-writing of the ‘peers.dat’ file.

Thanks to Peter Todd for responsibly disclosing the vulnerability
(CVE-2013-4627) and creating a fix.

 How to Upgrade

 Bitcoin-Qt version 0.8.4 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.8.4/

This is a maintenance release to fix a critical bug and three
security issues; we urge all users to upgrade.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you
run 0.8.4 your blockchain files will be re-indexed, which will take
anywhere from 30 minutes to several hours, depending on the speed of
your machine.

0.8.4 Release notes

Security issues

An attacker could send a series of messages that resulted in
an integer division-by-zero error in the Bloom Filter handling
code, causing the Bitcoin-Qt or bitcoind process to crash.
Bloom filters were introduced with version 0.8, so versions 0.8.0
through 0.8.3 are vulnerable to this critical denial-of-service attack.

A constant-time algorithm is now used to check RPC password
guess attempts; fixes https://github.com/bitcoin/bitcoin/issues/2838
(CVE-2013-4165)

Implement a better fix for the fill-memory-with-orphan-transactions
attack that was fixed in 0.8.3. See
https://bitslog.wordpress.com/2013/07/18/buggy-cve-2013-4627-patch-open-new-vectors-of-attack/
for a description of the weaknesses of the previous fix.
(CVE-2013-4627)

Bugs fixed

Fix multi-block reorg transaction resurrection.

Fix non-standard disconnected transactions causing mempool orphans.
This bug could cause nodes running with the -debug flag to crash.

OSX: use ‘FD_FULLSYNC’ with LevelDB, which will (hopefully!)
prevent the database corruption issues many people have
experienced on OSX.

Linux: clicking on bitcoin: links was broken if you were using
a Gnome-based desktop.

Fix a hang-at-shutdown bug that only affects users that compile
their own version of Bitcoin against Boost versions 1.50-1.52.

Other changes

Checkpoint at block 250,000 to speed up initial block downloads
and make the progress indicator when downloading more accurate.

Thanks to everybody who contributed to the 0.8.4 releases!

Pieter Wuille
Warren Togami
Patrick Strateman
pakt
Gregory Maxwell
Sergio Demian Lerner
grayleonard
Cory Fields
Matt Corallo
Gavin Andresen

 How to Upgrade

 Bitcoin-Qt version 0.8.5 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.8.5/

This is a maintenance release to fix a critical bug;
we urge all users to upgrade.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you
run 0.8.5 your blockchain files will be re-indexed, which will take
anywhere from 30 minutes to several hours, depending on the speed of
your machine.

0.8.5 Release notes

Bugs fixed

Transactions with version numbers larger than 0x7fffffff were
incorrectly being relayed and included in blocks.

Blocks containing transactions with version numbers larger
than 0x7fffffff caused the code that checks for LevelDB database
inconsistencies at startup to erroneously report database
corruption and suggest that you reindex your database.

This release also contains a non-critical fix to the code that
enforces BIP 34 (block height in the coinbase transaction).

–

Thanks to Gregory Maxwell and Pieter Wuille for quickly
identifying and fixing the transaction version number bug.

 How to Upgrade

 Bitcoin-Qt version 0.8.6 final is now available from:

http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.8.6/

This is a maintenance release to fix a critical bug; we urge all users to upgrade.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you already downloaded 0.8.6rc1 you do not need to re-download. This release is exactly the same.

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you
run 0.8.6 your blockchain files will be re-indexed, which will take
anywhere from 30 minutes to several hours, depending on the speed of
your machine.

0.8.6 Release notes

	Default block size increase for miners.
(see https://gist.github.com/gavinandresen/7670433#086-accept-into-block)

	Remove the all-outputs-must-be-greater-than-CENT-to-qualify-as-free rule for relaying
(see https://gist.github.com/gavinandresen/7670433#086-relaying)

	Lower maximum size for free transaction creation
(see https://gist.github.com/gavinandresen/7670433#086-wallet)

	OSX block chain database corruption fixes

	Update leveldb to 1.13

	Use fcntl with F_FULLSYNC instead of fsync on OSX

	Use native Darwin memory barriers

	Replace use of mmap in leveldb for improved reliability (only on OSX)

	Fix nodes forwarding transactions with empty vins and getting banned

	Network code performance and robustness improvements

	Additional debug.log logging for diagnosis of network problems, log timestamps by default

	Fix Bitcoin-Qt startup crash when clicking dock icon on OSX

	Fix memory leaks in CKey::SetCompactSignature() and Key::SignCompact()

	Fix rare GUI crash on send

	Various small GUI, documentation and build fixes

Warning

	There have been frequent reports of users running out of virtual memory on 32-bit systems
during the initial sync.
Hence it is recommended to use a 64-bit executable if possible.
A 64-bit executable for Windows is planned for 0.9.

Note: Gavin Andresen’s GPG signing key for SHA256SUMS.asc has been changed from key id 1FC730C1 to sub key 7BF6E212 (see https://github.com/bitcoin/bitcoin.org/pull/279).

 How to Upgrade

 Bitcoin Core version 0.9.0 is now available from:

https://bitcoin.org/bin/0.9.0/

This is a new major version release, bringing both new features and
bug fixes.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), uninstall all
earlier versions of Bitcoin, then run the installer (on Windows) or just copy
over /Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you run
0.9.0 your blockchain files will be re-indexed, which will take anywhere from
30 minutes to several hours, depending on the speed of your machine.

On Windows, do not forget to uninstall all earlier versions of the Bitcoin
client first, especially if you are switching to the 64-bit version.

Windows 64-bit installer

New in 0.9.0 is the Windows 64-bit version of the client. There have been
frequent reports of users running out of virtual memory on 32-bit systems
during the initial sync. Because of this it is recommended to install the
64-bit version if your system supports it.

NOTE: Release candidate 2 Windows binaries are not code-signed; use PGP
and the SHA256SUMS.asc file to make sure your binaries are correct.
In the final 0.9.0 release, Windows setup.exe binaries will be code-signed.

OSX 10.5 / 32-bit no longer supported

0.9.0 drops support for older Macs. The minimum requirements are now:

	A 64-bit-capable CPU (see http://support.apple.com/kb/ht3696);

	Mac OS 10.6 or later (see https://support.apple.com/kb/ht1633).

Downgrading warnings

The ‘chainstate’ for this release is not always compatible with previous
releases, so if you run 0.9 and then decide to switch back to a
0.8.x release you might get a blockchain validation error when starting the
old release (due to ‘pruned outputs’ being omitted from the index of
unspent transaction outputs).

Running the old release with the -reindex option will rebuild the chainstate
data structures and correct the problem.

Also, the first time you run a 0.8.x release on a 0.9 wallet it will rescan
the blockchain for missing spent coins, which will take a long time (tens
of minutes on a typical machine).

Rebranding to Bitcoin Core

To reduce confusion between Bitcoin-the-network and Bitcoin-the-software we
have renamed the reference client to Bitcoin Core.

OP_RETURN and data in the block chain

On OP_RETURN: There was been some confusion and misunderstanding in
the community, regarding the OP_RETURN feature in 0.9 and data in the
blockchain. This change is not an endorsement of storing data in the
blockchain. The OP_RETURN change creates a provably-prunable output,
to avoid data storage schemes – some of which were already deployed –
that were storing arbitrary data such as images as forever-unspendable
TX outputs, bloating bitcoin’s UTXO database.

Storing arbitrary data in the blockchain is still a bad idea; it is less
costly and far more efficient to store non-currency data elsewhere.

Autotools build system

For 0.9.0 we switched to an autotools-based build system instead of individual
(q)makefiles.

Using the standard “./autogen.sh; ./configure; make” to build Bitcoin-Qt and
bitcoind makes it easier for experienced open source developers to contribute
to the project.

Be sure to check doc/build-*.md for your platform before building from source.

Bitcoin-cli

Another change in the 0.9 release is moving away from the bitcoind executable
functioning both as a server and as a RPC client. The RPC client functionality
(“tell the running bitcoin daemon to do THIS”) was split into a separate
executable, ‘bitcoin-cli’. The RPC client code will eventually be removed from
bitcoind, but will be kept for backwards compatibility for a release or two.

walletpassphrase RPC

The behavior of the walletpassphrase RPC when the wallet is already unlocked
has changed between 0.8 and 0.9.

The 0.8 behavior of walletpassphrase is to fail when the wallet is already unlocked:

> walletpassphrase 1000
walletunlocktime = now + 1000
> walletpassphrase 10
Error: Wallet is already unlocked (old unlock time stays)

The new behavior of walletpassphrase is to set a new unlock time overriding
the old one:

> walletpassphrase 1000
walletunlocktime = now + 1000
> walletpassphrase 10
walletunlocktime = now + 10 (overriding the old unlock time)

Transaction malleability-related fixes

This release contains a few fixes for transaction ID (TXID) malleability
issues:

	-nospendzeroconfchange command-line option, to avoid spending
zero-confirmation change

	IsStandard() transaction rules tightened to prevent relaying and mining of
mutated transactions

	Additional information in listtransactions/gettransaction output to
report wallet transactions that conflict with each other because
they spend the same outputs.

	Bug fixes to the getbalance/listaccounts RPC commands, which would report
incorrect balances for double-spent (or mutated) transactions.

	New option: -zapwallettxes to rebuild the wallet’s transaction information

Transaction Fees

This release drops the default fee required to relay transactions across the
network and for miners to consider the transaction in their blocks to
0.01mBTC per kilobyte.

Note that getting a transaction relayed across the network does NOT guarantee
that the transaction will be accepted by a miner; by default, miners fill
their blocks with 50 kilobytes of high-priority transactions, and then with
700 kilobytes of the highest-fee-per-kilobyte transactions.

The minimum relay/mining fee-per-kilobyte may be changed with the
minrelaytxfee option. Note that previous releases incorrectly used
the mintxfee setting to determine which low-priority transactions should
be considered for inclusion in blocks.

The wallet code still uses a default fee for low-priority transactions of
0.1mBTC per kilobyte. During periods of heavy transaction volume, even this
fee may not be enough to get transactions confirmed quickly; the mintxfee
option may be used to override the default.

0.9.0 Release notes

RPC:

	New notion of ‘conflicted’ transactions, reported as confirmations: -1

	‘listreceivedbyaddress’ now provides tx ids

	Add raw transaction hex to ‘gettransaction’ output

	Updated help and tests for ‘getreceivedby(account|address)’

	In ‘getblock’, accept 2nd ‘verbose’ parameter, similar to getrawtransaction,
but defaulting to 1 for backward compatibility

	Add ‘verifychain’, to verify chain database at runtime

	Add ‘dumpwallet’ and ‘importwallet’ RPCs

	‘keypoolrefill’ gains optional size parameter

	Add ‘getbestblockhash’, to return tip of best chain

	Add ‘chainwork’ (the total work done by all blocks since the genesis block)
to ‘getblock’ output

	Make RPC password resistant to timing attacks

	Clarify help messages and add examples

	Add ‘getrawchangeaddress’ call for raw transaction change destinations

	Reject insanely high fees by default in ‘sendrawtransaction’

	Add RPC call ‘decodescript’ to decode a hex-encoded transaction script

	Make ‘validateaddress’ provide redeemScript

	Add ‘getnetworkhashps’ to get the calculated network hashrate

	New RPC ‘ping’ command to request ping, new ‘pingtime’ and ‘pingwait’ fields
in ‘getpeerinfo’ output

	Adding new ‘addrlocal’ field to ‘getpeerinfo’ output

	Add verbose boolean to ‘getrawmempool’

	Add rpc command ‘getunconfirmedbalance’ to obtain total unconfirmed balance

	Explicitly ensure that wallet is unlocked in importprivkey

	Add check for valid keys in importprivkey

Command-line options:

	New option: -nospendzeroconfchange to never spend unconfirmed change outputs

	New option: -zapwallettxes to rebuild the wallet’s transaction information

	Rename option ‘-tor’ to ‘-onion’ to better reflect what it does

	Add ‘-disablewallet’ mode to let bitcoind run entirely without wallet (when
built with wallet)

	Update default ‘-rpcsslciphers’ to include TLSv1.2

	make ‘-logtimestamps’ default on and rework help-message

	RPC client option: ‘-rpcwait’, to wait for server start

	Remove ‘-logtodebugger’

	Allow -noserver with bitcoind

Block-chain handling and storage:

	Update leveldb to 1.15

	Check for correct genesis (prevent cases where a datadir from the wrong
network is accidentally loaded)

	Allow txindex to be removed and add a reindex dialog

	Log aborted block database rebuilds

	Store orphan blocks in serialized form, to save memory

	Limit the number of orphan blocks in memory to 750

	Fix non-standard disconnected transactions causing mempool orphans

	Add a new checkpoint at block 279,000

Wallet:

	Bug fixes and new regression tests to correctly compute
the balance of wallets containing double-spent (or mutated) transactions

	Store key creation time. Calculate whole-wallet birthday.

	Optimize rescan to skip blocks prior to birthday

	Let user select wallet file with -wallet=foo.dat

	Consider generated coins mature at 101 instead of 120 blocks

	Improve wallet load time

	Don’t count txins for priority to encourage sweeping

	Don’t create empty transactions when reading a corrupted wallet

	Fix rescan to start from beginning after importprivkey

	Only create signatures with low S values

Mining:

	Increase default -blockmaxsize/prioritysize to 750K/50K

	‘getblocktemplate’ does not require a key to create a block template

	Mining code fee policy now matches relay fee policy

Protocol and network:

	Drop the fee required to relay a transaction to 0.01mBTC per kilobyte

	Send tx relay flag with version

	New ‘reject’ P2P message (BIP 0061, see
https://gist.github.com/gavinandresen/7079034 for draft)

	Dump addresses every 15 minutes instead of 10 seconds

	Relay OP_RETURN data TxOut as standard transaction type

	Remove CENT-output free transaction rule when relaying

	Lower maximum size for free transaction creation

	Send multiple inv messages if mempool.size > MAX_INV_SZ

	Split MIN_PROTO_VERSION into INIT_PROTO_VERSION and MIN_PEER_PROTO_VERSION

	Do not treat fFromMe transaction differently when broadcasting

	Process received messages one at a time without sleeping between messages

	Improve logging of failed connections

	Bump protocol version to 70002

	Add some additional logging to give extra network insight

	Added new DNS seed from bitcoinstats.com

Validation:

	Log reason for non-standard transaction rejection

	Prune provably-unspendable outputs, and adapt consistency check for it.

	Detect any sufficiently long fork and add a warning

	Call the -alertnotify script when we see a long or invalid fork

	Fix multi-block reorg transaction resurrection

	Reject non-canonically-encoded serialization sizes

	Reject dust amounts during validation

	Accept nLockTime transactions that finalize in the next block

Build system:

	Switch to autotools-based build system

	Build without wallet by passing --disable-wallet to configure, this
removes the BerkeleyDB dependency

	Upgrade gitian dependencies (libpng, libz, libupnpc, boost, openssl) to more
recent versions

	Windows 64-bit build support

	Solaris compatibility fixes

	Check integrity of gitian input source tarballs

	Enable full GCC Stack-smashing protection for all OSes

GUI:

	Switch to Qt 5.2.0 for Windows build

	Add payment request (BIP 0070) support

	Improve options dialog

	Show transaction fee in new send confirmation dialog

	Add total balance in overview page

	Allow user to choose data directory on first start, when data directory is
missing, or when the -choosedatadir option is passed

	Save and restore window positions

	Add vout index to transaction id in transactions details dialog

	Add network traffic graph in debug window

	Add open URI dialog

	Add Coin Control Features

	Improve receive coins workflow: make the ‘Receive’ tab into a form to request
payments, and move historical address list functionality to File menu.

	Rebrand to Bitcoin Core

	Move initialization/shutdown to a thread. This prevents “Not responding”
messages during startup. Also show a window during shutdown.

	Don’t regenerate autostart link on every client startup

	Show and store message of normal bitcoin:URI

	Fix richtext detection hang issue on very old Qt versions

	OS X: Make use of the 10.8+ user notification center to display Growl-like
notifications

	OS X: Added NSHighResolutionCapable flag to Info.plist for better font
rendering on Retina displays.

	OS X: Fix bitcoin-qt startup crash when clicking dock icon

	Linux: Fix Gnome bitcoin: URI handler

Miscellaneous:

	Add Linux script (contrib/qos/tc.sh) to limit outgoing bandwidth

	Add ‘-regtest’ mode, similar to testnet but private with instant block
generation with ‘setgenerate’ RPC.

	Add ‘linearize.py’ script to contrib, for creating bootstrap.dat

	Add separate bitcoin-cli client

Credits

Thanks to everyone who contributed to this release:

	Andrey

	Ashley Holman

	b6393ce9-d324-4fe1-996b-acf82dbc3d53

	bitsofproof

	Brandon Dahler

	Calvin Tam

	Christian Decker

	Christian von Roques

	Christopher Latham

	Chuck

	coblee

	constantined

	Cory Fields

	Cozz Lovan

	daniel

	Daniel Larimer

	David Hill

	Dmitry Smirnov

	Drak

	Eric Lombrozo

	fanquake

	fcicq

	Florin

	frewil

	Gavin Andresen

	Gregory Maxwell

	gubatron

	Guillermo Céspedes Tabárez

	Haakon Nilsen

	HaltingState

	Han Lin Yap

	harry

	Ian Kelling

	Jeff Garzik

	Johnathan Corgan

	Jonas Schnelli

	Josh Lehan

	Josh Triplett

	Julian Langschaedel

	Kangmo

	Lake Denman

	Luke Dashjr

	Mark Friedenbach

	Matt Corallo

	Michael Bauer

	Michael Ford

	Michagogo

	Midnight Magic

	Mike Hearn

	Nils Schneider

	Noel Tiernan

	Olivier Langlois

	patrick s

	Patrick Strateman

	paveljanik

	Peter Todd

	phantomcircuit

	phelixbtc

	Philip Kaufmann

	Pieter Wuille

	Rav3nPL

	R E Broadley

	regergregregerrge

	Robert Backhaus

	Roman Mindalev

	Rune K. Svendsen

	Ryan Niebur

	Scott Ellis

	Scott Willeke

	Sergey Kazenyuk

	Shawn Wilkinson

	Sined

	sje

	Subo1978

	super3

	Tamas Blummer

	theuni

	Thomas Holenstein

	Timon Rapp

	Timothy Stranex

	Tom Geller

	Torstein Husebø

	Vaclav Vobornik

	vhf / victor felder

	Vinnie Falco

	Warren Togami

	Wil Bown

	Wladimir J. van der Laan

 How to Upgrade

 Bitcoin Core version 0.9.1 is now available from:

https://bitcoin.org/bin/0.9.1/

This is a security update. It is recommended to upgrade to this release
as soon as possible.

It is especially important to upgrade if you currently have version
0.9.0 installed and are using the graphical interface OR you are using
bitcoind from any pre-0.9.1 version, and have enabled SSL for RPC and
have configured allowip to allow rpc connections from potentially
hostile hosts.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you run
0.9.1 your blockchain files will be re-indexed, which will take anywhere from
30 minutes to several hours, depending on the speed of your machine.

0.9.1 Release notes

No code changes were made between 0.9.0 and 0.9.1. Only the dependencies were changed.

	Upgrade OpenSSL to 1.0.1g. This release fixes the following vulnerabilities which can
affect the Bitcoin Core software:

	CVE-2014-0160 (“heartbleed”)
A missing bounds check in the handling of the TLS heartbeat extension can
be used to reveal up to 64k of memory to a connected client or server.

	CVE-2014-0076
The Montgomery ladder implementation in OpenSSL does not ensure that
certain swap operations have a constant-time behavior, which makes it
easier for local users to obtain ECDSA nonces via a FLUSH+RELOAD cache
side-channel attack.

	Add statically built executables to Linux build

Credits

Credits go to the OpenSSL team for fixing the vulnerabilities quickly.

 How to Upgrade

 Bitcoin Core version 0.9.2.1 is now available from:

https://bitcoin.org/bin/0.9.2.1/

This is a new minor version release, bringing mostly bug fixes and some minor
improvements. OpenSSL has been updated because of a security issue (CVE-2014-0224).
Upgrading to this release is recommended.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you run
0.9.2.1 your blockchain files will be re-indexed, which will take anywhere from
30 minutes to several hours, depending on the speed of your machine.

Downgrading warnings

The ‘chainstate’ for this release is not always compatible with previous
releases, so if you run 0.9.x and then decide to switch back to a
0.8.x release you might get a blockchain validation error when starting the
old release (due to ‘pruned outputs’ being omitted from the index of
unspent transaction outputs).

Running the old release with the -reindex option will rebuild the chainstate
data structures and correct the problem.

Also, the first time you run a 0.8.x release on a 0.9 wallet it will rescan
the blockchain for missing spent coins, which will take a long time (tens
of minutes on a typical machine).

Important changes

Gitian OSX build

The deterministic build system that was already used for Windows and Linux
builds is now used for OSX as well. Although the resulting executables have
been tested quite a bit, there could be possible regressions. Be sure to report
these on the Github bug tracker mentioned above.

Compatibility of Linux build

For Linux we now build against Qt 4.6, and filter the symbols for libstdc++ and glibc.
This brings back compatibility with

	Debian 6+ / Tails

	Ubuntu 10.04

	CentOS 6.5

0.9.2 - 0.9.2.1 Release notes

The OpenSSL dependency in the gitian builds has been upgraded to 1.0.1h because of CVE-2014-0224.

RPC:

	Add getwalletinfo, getblockchaininfo and getnetworkinfo calls (will replace hodge-podge getinfo at some point)

	Add a relayfee field to getnetworkinfo

	Fix RPC related shutdown hangs and leaks

	Always show syncnode in getpeerinfo

	sendrawtransaction: report the reject code and reason, and make it possible to re-send transactions that are already in the mempool

	getmininginfo show right genproclimit

Command-line options:

	Fix -printblocktree output

	Show error message if ReadConfigFile fails

Block-chain handling and storage:

	Fix for GetBlockValue() after block 13,440,000 (BIP42)

	Upgrade leveldb to 1.17

Protocol and network code:

	Per-peer block download tracking and stalled download detection

	Add new DNS seed from bitnodes.io

	Prevent socket leak in ThreadSocketHandler and correct some proxy related socket leaks

	Use pnode->nLastRecv as sync score (was the wrong way around)

Wallet:

	Make GetAvailableCredit run GetHash() only once per transaction (performance improvement)

	Lower paytxfee warning threshold from 0.25 BTC to 0.01 BTC

	Fix importwallet nTimeFirstKey (trigger necessary rescans)

	Log BerkeleyDB version at startup

	CWallet init fix

Build system:

	Add OSX build descriptors to gitian

	Fix explicit –disable-qt-dbus

	Don’t require db_cxx.h when compiling with wallet disabled and GUI enabled

	Improve missing boost error reporting

	Upgrade miniupnpc version to 1.9

	gitian-linux: –enable-glibc-back-compat for binary compatibility with old distributions

	gitian: don’t export any symbols from executable

	gitian: build against Qt 4.6

	devtools: add script to check symbols from Linux gitian executables

	Remove build-time no-IPv6 setting

GUI:

	Fix various coin control visual issues

	Show number of in/out connections in debug console

	Show weeks as well as years behind for long timespans behind

	Enable and disable the Show and Remove buttons for requested payments history based on whether any entry is selected.

	Show also value for options overridden on command line in options dialog

	Fill in label from address book also for URIs

	Fixes feel when resizing the last column on tables (issue #2862)

	Fix ESC in disablewallet mode

	Add expert section to wallet tab in optionsdialog

	Do proper boost::path conversion (fixes unicode in datadir)

	Only override -datadir if different from the default (fixes -datadir in config file)

	Show rescan progress at start-up

	Show importwallet progress

	Get required locks upfront in polling functions (avoids hanging on locks)

	Catch Windows shutdown events while client is running

	Optionally add third party links to transaction context menu

	Check for !pixmap() before trying to export QR code (avoids crashes when no QR code could be generated)

	Fix “Start bitcoin on system login”

Miscellaneous:

	Replace non-threadsafe C functions (gmtime, strerror and setlocale)

	Add missing cs_main and wallet locks

	Avoid exception at startup when system locale not recognized

	Changed bitrpc.py’s raw_input to getpass for passwords to conceal characters during command line input

	devtools: add a script to fetch and postprocess translations

Credits

Thanks to everyone who contributed to this release:

	Addy Yeow

	Altoidnerd

	Andrea D’Amore

	Andreas Schildbach

	Bardi Harborow

	Brandon Dahler

	Bryan Bishop

	Chris Beams

	Christian von Roques

	Cory Fields

	Cozz Lovan

	daniel

	Daniel Newton

	David A. Harding

	ditto-b

	duanemoody

	Eric S. Bullington

	Fabian Raetz

	Gavin Andresen

	Gregory Maxwell

	gubatron

	Haakon Nilsen

	harry

	Hector Jusforgues

	Isidoro Ghezzi

	Jeff Garzik

	Johnathan Corgan

	jtimon

	Kamil Domanski

	langerhans

	Luke Dashjr

	Manuel Araoz

	Mark Friedenbach

	Matt Corallo

	Matthew Bogosian

	Meeh

	Michael Ford

	Michagogo

	Mikael Wikman

	Mike Hearn

	olalonde

	paveljanik

	peryaudo

	Philip Kaufmann

	philsong

	Pieter Wuille

	R E Broadley

	richierichrawr

	Rune K. Svendsen

	rxl

	shshshsh

	Simon de la Rouviere

	Stuart Cardall

	super3

	Telepatheic

	Thomas Zander

	Torstein Husebø

	Warren Togami

	Wladimir J. van der Laan

	Yoichi Hirai

 How to Upgrade

 Bitcoin Core version 0.9.2 is now available from:

https://bitcoin.org/bin/0.9.2/

This is a new minor version release, bringing mostly bug fixes and some minor
improvements. OpenSSL has been updated because of a security issue (CVE-2014-0224).
Upgrading to this release is recommended.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you run
0.9.2 your blockchain files will be re-indexed, which will take anywhere from
30 minutes to several hours, depending on the speed of your machine.

Downgrading warnings

The ‘chainstate’ for this release is not always compatible with previous
releases, so if you run 0.9.x and then decide to switch back to a
0.8.x release you might get a blockchain validation error when starting the
old release (due to ‘pruned outputs’ being omitted from the index of
unspent transaction outputs).

Running the old release with the -reindex option will rebuild the chainstate
data structures and correct the problem.

Also, the first time you run a 0.8.x release on a 0.9 wallet it will rescan
the blockchain for missing spent coins, which will take a long time (tens
of minutes on a typical machine).

Important changes

Gitian OSX build

The deterministic build system that was already used for Windows and Linux
builds is now used for OSX as well. Although the resulting executables have
been tested quite a bit, there could be possible regressions. Be sure to report
these on the Github bug tracker mentioned above.

Compatibility of Linux build

For Linux we now build against Qt 4.6, and filter the symbols for libstdc++ and glibc.
This brings back compatibility with

	Debian 6+ / Tails

	Ubuntu 10.04

	CentOS 6.5

0.9.2 Release notes

The OpenSSL dependency in the gitian builds has been upgraded to 1.0.1h because of CVE-2014-0224.

RPC:

	Add getwalletinfo, getblockchaininfo and getnetworkinfo calls (will replace hodge-podge getinfo at some point)

	Add a relayfee field to getnetworkinfo

	Fix RPC related shutdown hangs and leaks

	Always show syncnode in getpeerinfo

	sendrawtransaction: report the reject code and reason, and make it possible to re-send transactions that are already in the mempool

	getmininginfo show right genproclimit

Command-line options:

	Fix -printblocktree output

	Show error message if ReadConfigFile fails

Block-chain handling and storage:

	Fix for GetBlockValue() after block 13,440,000 (BIP42)

	Upgrade leveldb to 1.17

Protocol and network code:

	Per-peer block download tracking and stalled download detection

	Add new DNS seed from bitnodes.io

	Prevent socket leak in ThreadSocketHandler and correct some proxy related socket leaks

	Use pnode->nLastRecv as sync score (was the wrong way around)

Wallet:

	Make GetAvailableCredit run GetHash() only once per transaction (performance improvement)

	Lower paytxfee warning threshold from 0.25 BTC to 0.01 BTC

	Fix importwallet nTimeFirstKey (trigger necessary rescans)

	Log BerkeleyDB version at startup

	CWallet init fix

Build system:

	Add OSX build descriptors to gitian

	Fix explicit –disable-qt-dbus

	Don’t require db_cxx.h when compiling with wallet disabled and GUI enabled

	Improve missing boost error reporting

	Upgrade miniupnpc version to 1.9

	gitian-linux: –enable-glibc-back-compat for binary compatibility with old distributions

	gitian: don’t export any symbols from executable

	gitian: build against Qt 4.6

	devtools: add script to check symbols from Linux gitian executables

	Remove build-time no-IPv6 setting

GUI:

	Fix various coin control visual issues

	Show number of in/out connections in debug console

	Show weeks as well as years behind for long timespans behind

	Enable and disable the Show and Remove buttons for requested payments history based on whether any entry is selected.

	Show also value for options overridden on command line in options dialog

	Fill in label from address book also for URIs

	Fixes feel when resizing the last column on tables (issue #2862)

	Fix ESC in disablewallet mode

	Add expert section to wallet tab in optionsdialog

	Do proper boost::path conversion (fixes unicode in datadir)

	Only override -datadir if different from the default (fixes -datadir in config file)

	Show rescan progress at start-up

	Show importwallet progress

	Get required locks upfront in polling functions (avoids hanging on locks)

	Catch Windows shutdown events while client is running

	Optionally add third party links to transaction context menu

	Check for !pixmap() before trying to export QR code (avoids crashes when no QR code could be generated)

	Fix “Start bitcoin on system login”

Miscellaneous:

	Replace non-threadsafe C functions (gmtime, strerror and setlocale)

	Add missing cs_main and wallet locks

	Avoid exception at startup when system locale not recognized

	Changed bitrpc.py’s raw_input to getpass for passwords to conceal characters during command line input

	devtools: add a script to fetch and postprocess translations

Credits

Thanks to everyone who contributed to this release:

	Addy Yeow

	Altoidnerd

	Andrea D’Amore

	Andreas Schildbach

	Bardi Harborow

	Brandon Dahler

	Bryan Bishop

	Chris Beams

	Christian von Roques

	Cory Fields

	Cozz Lovan

	daniel

	Daniel Newton

	David A. Harding

	ditto-b

	duanemoody

	Eric S. Bullington

	Fabian Raetz

	Gavin Andresen

	Gregory Maxwell

	gubatron

	Haakon Nilsen

	harry

	Hector Jusforgues

	Isidoro Ghezzi

	Jeff Garzik

	Johnathan Corgan

	jtimon

	Kamil Domanski

	langerhans

	Luke Dashjr

	Manuel Araoz

	Mark Friedenbach

	Matt Corallo

	Matthew Bogosian

	Meeh

	Michael Ford

	Michagogo

	Mikael Wikman

	Mike Hearn

	olalonde

	paveljanik

	peryaudo

	Philip Kaufmann

	philsong

	Pieter Wuille

	R E Broadley

	richierichrawr

	Rune K. Svendsen

	rxl

	shshshsh

	Simon de la Rouviere

	Stuart Cardall

	super3

	Telepatheic

	Thomas Zander

	Torstein Husebø

	Warren Togami

	Wladimir J. van der Laan

	Yoichi Hirai

 Upgrading and downgrading

 Bitcoin Core version 0.9.3 is now available from:

https://bitcoin.org/bin/0.9.3/

This is a new minor version release, bringing only bug fixes and updated
translations. Upgrading to this release is recommended.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

Upgrading and downgrading

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you run
0.9.3 your blockchain files will be re-indexed, which will take anywhere from
30 minutes to several hours, depending on the speed of your machine.

Downgrading warnings

The ‘chainstate’ for this release is not always compatible with previous
releases, so if you run 0.9.x and then decide to switch back to a
0.8.x release you might get a blockchain validation error when starting the
old release (due to ‘pruned outputs’ being omitted from the index of
unspent transaction outputs).

Running the old release with the -reindex option will rebuild the chainstate
data structures and correct the problem.

Also, the first time you run a 0.8.x release on a 0.9 wallet it will rescan
the blockchain for missing spent coins, which will take a long time (tens
of minutes on a typical machine).

0.9.3 Release notes

RPC:

	Avoid a segfault on getblock if it can’t read a block from disk

	Add paranoid return value checks in base58

Protocol and network code:

	Don’t poll showmyip.com, it doesn’t exist anymore

	Add a way to limit deserialized string lengths and use it

	Add a new checkpoint at block 295,000

	Increase IsStandard() scriptSig length

	Avoid querying DNS seeds, if we have open connections

	Remove a useless millisleep in socket handler

	Stricter memory limits on CNode

	Better orphan transaction handling

	Add -maxorphantx=<n> and -maxorphanblocks=<n> options for control over the maximum orphan transactions and blocks

Wallet:

	Check redeemScript size does not exceed 520 byte limit

	Ignore (and warn about) too-long redeemScripts while loading wallet

GUI:

	fix ‘opens in testnet mode when presented with a BIP-72 link with no fallback’

	AvailableCoins: acquire cs_main mutex

	Fix unicode character display on MacOSX

Miscellaneous:

	key.cpp: fail with a friendlier message on missing ssl EC support

	Remove bignum dependency for scripts

	Upgrade OpenSSL to 1.0.1i (see https://www.openssl.org/news/secadv_20140806.txt - just to be sure, no critical issues for Bitcoin Core)

	Upgrade miniupnpc to 1.9.20140701

	Fix boost detection in build system on some platforms

Credits

Thanks to everyone who contributed to this release:

	Andrew Poelstra

	Cory Fields

	Gavin Andresen

	Jeff Garzik

	Johnathan Corgan

	Julian Haight

	Michael Ford

	Pavel Vasin

	Peter Todd

	phantomcircuit

	Pieter Wuille

	Rose Toomey

	Ruben Dario Ponticelli

	shshshsh

	Trevin Hofmann

	Warren Togami

	Wladimir J. van der Laan

	Zak Wilcox

As well as everyone that helped translating on Transifex [https://www.transifex.com/projects/p/bitcoin/].

 How to Upgrade

 Bitcoin Core version 0.9.4 is now available from:

https://bitcoin.org/bin/0.9.4/

This is a new minor version release, bringing only bug fixes and updated
translations. Upgrading to this release is recommended.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

OpenSSL Warning

OpenSSL 1.0.0p / 1.0.1k was recently released and is being pushed out by
various operating system maintainers. Review by Gregory Maxwell determined that
this update is incompatible with the Bitcoin system and could lead to consensus
forks.

Bitcoin Core released binaries from https://bitcoin.org are unaffected,
as are any built with the gitian deterministic build system.

However, if you are running either

	The Ubuntu PPA from https://launchpad.net/~bitcoin/+archive/ubuntu/bitcoin

	A third-party or self-compiled Bitcoin Core

upgrade to Bitcoin Core 0.9.4, which includes a workaround, before updating
OpenSSL.

The incompatibility is due to the OpenSSL update changing the
behavior of ECDSA validation to reject any signature which is
not encoded in a very rigid manner. This was a result of
OpenSSL’s change for CVE-2014-8275 “Certificate fingerprints
can be modified”.

We are specifically aware of potential hard-forks due to signature
encoding handling and had been hoping to close them via BIP62 in 0.10.
BIP62’s purpose is to improve transaction malleability handling and
as a side effect rigidly defines the encoding for signatures, but the
overall scope of BIP62 has made it take longer than we’d like to
deploy.

0.9.4 changelog

Validation:

	b8e81b7 consensus: guard against openssl’s new strict DER checks

	60c51f1 fail immediately on an empty signature

	037bfef Improve robustness of DER recoding code

Command-line options:

	cd5164a Make -proxy set all network types, avoiding a connect leak.

P2P:

	bb424e4 Limit the number of new addressses to accumulate

RPC:

	0a94661 Disable SSLv3 (in favor of TLS) for the RPC client and server.

Build system:

	f047dfa gitian: openssl-1.0.1i.tar.gz -> openssl-1.0.1k.tar.gz

	5b9f78d build: Fix OSX build when using Homebrew and qt5

	ffab1dd Keep symlinks when copying into .app bundle

	613247f osx: fix signing to make Gatekeeper happy (again)

Miscellaneous:

	25b49b5 Refactor -alertnotify code

	2743529 doc: Add instructions for consistent Mac OS X build names

Credits

Thanks to who contributed to this release, at least:

	Cory Fields

	Gavin Andresen

	Gregory Maxwell

	Jeff Garzik

	Luke Dashjr

	Matt Corallo

	Pieter Wuille

	Saivann

	Sergio Demian Lerner

	Wladimir J. van der Laan

As well as everyone that helped translating on Transifex [https://www.transifex.com/projects/p/bitcoin/].

 How to Upgrade

 Bitcoin Core version 0.9.5 is now available from:

https://bitcoin.org/bin/0.9.5/

This is a new minor version release, with the goal of backporting BIP66. There
are also a few bug fixes and updated translations. Upgrading to this release is
recommended.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

Notable changes

Mining and relay policy enhancements

Bitcoin Core’s block templates are now for version 3 blocks only, and any mining
software relying on its getblocktemplate must be updated in parallel to use
libblkmaker either version 0.4.2 or any version from 0.5.1 onward.
If you are solo mining, this will affect you the moment you upgrade Bitcoin
Core, which must be done prior to BIP66 achieving its 951/1001 status.
If you are mining with the stratum mining protocol: this does not affect you.
If you are mining with the getblocktemplate protocol to a pool: this will affect
you at the pool operator’s discretion, which must be no later than BIP66
achieving its 951/1001 status.

0.9.5 changelog

	74f29c2 Check pindexBestForkBase for null

	9cd1dd9 Fix priority calculation in CreateTransaction

	6b4163b Sanitize command strings before logging them.

	3230b32 Raise version of created blocks, and enforce DERSIG in mempool

	989d499 Backport of some of BIP66’s tests

	ab03660 Implement BIP 66 validation rules and switchover logic

	8438074 build: fix dynamic boost check when –with-boost= is used

Credits

Thanks to who contributed to this release, at least:

	21E14

	Alex Morcos

	Cory Fields

	Gregory Maxwell

	Pieter Wuille

	Wladimir J. van der Laan

As well as everyone that helped translating on Transifex [https://www.transifex.com/projects/p/bitcoin/].

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_images/create_vm_hard_disk.png
Hard disk

If you wish you can add a virtual hard disk to the new
machine. You can either create a new hard disk fle or select
‘one from the list or from another location using the folder icon.

If you need a more complex storage set-up you can skip this
step and make the changes to the machine settings once the
machine is created.

‘The recommended size of the hard disk s 8.00 GB.

Do not add a virtual hard disk
1O Create a virtual hard disk now
Use an existing virtual hard disk file

gitianbuilds. 1.vdi (Normal, 40.00 GB)

GoBack | ([Cmatel) = Cancel

_images/create_vm_hard_disk_file_type.png
Hard disk file type

Please choose the type of file that you would like to use for the new virtual
hard disk. If you do not need to use it with other virtualization software you
can leave this setting unchanged.

1O VDI (VirtualBox Disk Image)
VMDK (Virtual Machine Disk)
VHD (Virtual Hard Disk)

HDD (Parallels Hard Disk)
QED (QEMU enhanced disk)
QCOW (QEMU Copy-On-Wite)

Expert Mode GoBack ([Continuell] ~Cancel

_images/create_new_vm.png
Name and operating system

Please choose a descriptive name for the new virtual machine

and select the type of operating system you intend to install
onit. The name you choose will be used throughout
VirtualBox to identify this machine.

Name: |gitianbuid

Type: | Linux ﬁ

EotMode | Goback | (SERRIEND | Carcel

_images/create_vm_file_location_size.png
File location and size

Please type the name of the new virtual hard drive file into the box below
or click on the folder icon to select a different folder to create the file in.

gitianbuild 7]
Select the size of the virtual hard drive in megabytes. This size is the limit

on the amount of file data that a virtual machine will be able to store on
the hard drive.

—_—) 40.00 GB

4.00MB 2.00TB

<Back Cancel

_images/create_vm_memsize.png
Memory size

Select the amount of memory (RAM) in megabytes to be
allocated to the virtual machine.

‘The recommended memory size is 768 MB.

B ——" R)

4mB 16384 MB

GoBack | ([Gontinuel) = Cancel

_images/create_vm_storage_physical_hard_disk.png
Storage on physical hard disk

Please choose whether the new virtual hard disk file should grow as it is used
(dynamicaly allocated) or i it should be created at its maximum size (ixed
size).

A dynamically allocated hard disk file will only use space on your physical
hard disk s it fils up (up to & maximum fixed size), although it will not shrink
again automatically when space onitis freed.

Afixed size hard disk fils may take longer to create on some systems butis
often faster to use.

O Dynamically allocated
Fixed size.

GoBack | ([Gontinuel) = Cancel

_images/debian_install_10_configure_clock.png
1 [Configure the clock —————————————————————

If the desired time zone is not listed, then please go back to the step 'Choose language'
and select a country that uses the desired time zone (the country where you live or are
located) .

Select your time zone:

Central
Mountain
Pacific
Alaska
Hawaii
Arizana

East Indiana
Samoa

<Go Back>

_images/debian_install_14_finish.png
—————————————————————— [!1] Partition disks ———

This is an overview of your currently configured partitions and mount points. Select a
partition to modify its settings (file system, mount point, etc.), a free space to create
partitions, or a device to initialize its partition table.

Guided partitioning

Conf igure softuare RAID

Configure the Logical Volume Manager
Conf igure encrupted volumes
Configure iSCSI volumes

SCST1 (0,0,0) (sda) - 42.9 GB ATA VDX HARDDISK
#1 primary 41.2 68 f extd /
#5 logical 1.8 6B f swap suap

<Go Back>

_images/debian_install_15_write_changes.png
1 (1] Partition disks ———————

If you continue, the changes listed below will he written to the disks. Otherwise, you
will be able to make further changes manually.

The partition tables of the following devices are changed:
SCST1 (0,0,0) (sda)

The following partitions are going to be formatted:
partition #1 of SCSIL (0,0,0) (sda) as extd
partition #5 of SCSIL (0,0,0) (sda) as swap

Hrite the changes to disks?
<No>

_images/debian_install_11_partition_disks.png
1 [l Partition disks ——————————————————————
The installer can guide you through partitioning a disk (using different standard
schemes) or, if you prefer, you can do it menually. With guided partitioning you will
still have a chance later to review and customise the results.

If you choose guided partitioning for an entire disk, you will next be asked which disk
should be used.

Partitioning method:

Guided - use entire disk and set up LV
Guided - use entire disk and set up encrypted LVK
Manual

<Go Back>

_images/debian_install_12_choose_disk.png
1 [11] Partition disks ———

Note that all data on the disk you select will be erased, but not before you have
confirmed that you really want to make the changes.

Select disk to partitio

<Go Back>

_images/debian_install_19_software_selection.png
1 [! Softuare selection ———————————————————
At the moment, only the core of the system is installed. To tune the system to your
needs, you can choose to install one or more of the following predefined collections of
softuare.

Choose softuare to install:

<Go Back>

_images/debian_install_1_boot_menu.png
Debian GNU/Linux installer boot menu

Install o -
Graphical install
e . debian

Help |
Installl with speech sunthesis GNU/Linux

Press ENTER to boot or TAB to) edit a menu entry

_images/debian_install_16_choose_a_mirror.png
[1] Configure the package manager

The goal is to find a mirror of the Debian archive that is close to you on the network —-
be auare that nearby countries, or even your own, may not be the best choice

Debian archive mirror country:

enter information manually
Algeria

]
Arien()na I

Austria
Bangladesh
Belarus

Belgium

Brazil

Bulgaria

Canada

chile

China

Colombia

Costa Rica
Croatia

Czech Republic
Denmark

E1 Salvadar
Estonia

Finland

France

French Polynesia

<Go Back>

ctivates buttons

_images/debian_install_18_proxy_settings.png
1 [!] Configure the package manager ——————————————————

If you need to use a HTTP proxy to access the outside world, enter the proxy information
here. Otherwise, leave this blank.

The proxy information should be given in the standard form of
"http:/s[luser] [:pass]@lhost [:port] /"',

HTTP proxy information (blank for none):

<Go Back> <continue>

_images/debian_install_21_install_grub_bootloader.png
T [!] Install the GRUB boot loader on a hard disk ——————————
‘You need to make the newly installed system bootable, by installing the GRUB boot loader
on a bootable device. The usual way to do this is to install GRUB on the master hoot
record of your first hard drive. If you prefer, you can install GRUB elseuhere on the
drive, or to another drive, or even to a floppy.
Device for hoot loader installation:

Enter device m:

<Go Back>

_images/debian_install_22_finish_installation.png
<Tab> moves; <Space> selects; <Enter> activates buttons

_images/debian_install_20_install_grub.png
T [!] Install the GRUB boot loader on a hard disk ————————

It seems that this new installation is the only operating system on this computer. If so,
it should be safe to install the GRUB boot loader to the master boot record of your first

hard drive.

Warning: If the installer failed to detect another operating system that is present on
your computer, modifying the master boot record will make that operating sustem
temporarily unbootable, though GRUB can be manually configured later to boot it.

Install the GRUB hoot loader to the master boot record?

<No>

<Go Back>

_images/debian_install_4_configure_keyboard.png
1 [11] Configure the keyboard F—

Keunap to use

'

Asturian

Bangladesh

Belarusian

Bengall

Belgian

Bosnian

Brazilian

British English

Bulgarian
Bulgarian (phonetic layout)
Burmese

Canadian French

Canadian Multilingual
Catalan

Chinese

Croatian

Czech

Danish

Dutch

Dvarak

Dzongkha

Esperanto

Estonian

<Go Back>

_images/debian_install_5_configure_the_network.png
1 [! Configure the netuork ———————————————————
Please enter the hostname for this system.
The hostname is a single word that identifies your system to the netuork. If you don't
know what your hostname should be, consult your network administrator. If you are setting
up your oun home netuork, you can make something up here.

Hostname:

<Go Back> <continue>

_images/debian_install_2_select_a_language.png
[11] Select a language

Choose the language to be used for the installation process. The selected language will
also be the default language for the installed sustem

Language:

c No localization
Albanian shaip
frabic e
Asturian Asturianu
Basgue Euskara
Belarusian Benapyckas
Bosnian Bosanski
Bulgarian Brarapcku
Catalan Catald
Chinese (Simplified) ()
Chinese (Traditional) ()

Croatian Hrvatski

czech CeStina

Danish Dansk.
Nederlands

Esperanto Esperanto
Estonian Eesti
Finnish Suomi
French Francais
Galician Galego
Gernan Deutsch
Greek EAAY LKE:

<Go Back>

b:

_images/debian_install_3_select_location.png
[11] select your location

The selected location will be used to set your time zone and also for example to help
select the system locale. Normally this should be the country where you live.

This is a shortlist of locations based on the language you selected. Choose "other' if
your location is not listed.

Country, territory or area:

Antigua and Barbuda
Australia
Botsuana
Canada

Hong Kong
India
Ireland

New Zealand
Nigeria
Fhilippines
Singapore
South Africa

United Klnﬁdnm

zambia
2imbabue
ather

<Go Back>

b:

_images/debian_install_8_set_up_username.png
1 [!!] Set up users and passwords ———————————————

Select a username for the new account. Your first name is a reasonable choice. The
username should start with a lower-case letter, which can be followed by any combination
of numbers and more louer-case letters.

Username for your account:

<Go Back> <continue>

_images/debian_install_6a_set_up_root_password.png
1 [!!] Set up users and passwords ———————————————

You need to set a passuord for 'root', the system administrative account. A malicious or
ungualified user with root access can have disastrous results, so you should take care to
choose a root password that is not easy to guess. It should not be a word found in
dictionaries, or a word that could be easily associated with you.

A good password will contain a mixture of letters, numbers and punctuation and should be
changed at regular intervals.

The root user should not have an empty passuord. If you leave this empty, the root
account will be disabled and the system's initial user account will be given the pouer to
become root using the "sudo" command.

Note that you will not be able to see the password as you type it.

Root passuord:

<Go Back> <continue>

_images/debian_install_7_set_up_user_fullname.png
1 [!!] Set up users and passwords ———————————————

A user account will be created for you to use instead of the root account for
non-administrative activities.

Please enter the real name of this user. This information will be used for instance as
default origin for emails sent by this user as well as any program uhich displays or uses
the user's real name. Your full name is a reasonable choice.

Full name for the new user:

<Go Back> <continue>

_images/network_settings.png
General System

Display Storage.

ncpor2

gitianbuild - Network

@ &= o =

Audio | Network | Ports Shared Folders User Interface

Adapter3 Adapter 4

Enable Network Adapter

Attached to:
Name:

¥ Advanced

Adapter Type:
Promiscuous Mode:

MAC Address:

NAT

Intel PRO/1000 MT Desktop (82540EM)
Deny

0800276E6306

Cable Connected

Port Forwarding

Cancel

o

o

o

&

_images/port_forwarding_rules.png
Protocol
| Tcp

Host P

Host Port
| 22202 |

Guest IP

Gusstrot| @

2

Cancel

_images/debian_install_9_user_password.png
1 [!!] Set up users and passwords ———————————————

A good password will contain a mixture of letters, numbers and punctuation and should be
changed at regular intervals.

Choose a passuord for the new user:

<Go Back> <continue>

_images/debian_root_login.png
Debian GNU/Linux 8 debian ttyl

debian login: root

Passuord:

Last login: Med Aug 5 23:15:19 EDT 2015 from 10.0.2.2 on pts/0

Linux debian 3.16.0-4-amd64 #1 SMP Debian 3.16.7-cktli-1+dehBu3 (2015-08-04)